



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3. 三角形的中位线一、学生知识状况分析 本节课是在学生学习了全等三角形、平行四边形的性质与判定的基础上学习三角形中位线的概念和性质。三角形中位线是继三角形的角平分线、中线、高线后的第四种重要线段。三角形中位线定理为证明直线的平行和线段的倍分关系提供了新的方法和依据。三角形中位线定理所显示的特点既有线段的位置关系又有线段的数量关系,因此对实际问题可进行定性和定量的描述,在生活中有着广泛的应用。二、教学任务分析本节课以“问题情境建立模型巩固训练拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。利用制作的多媒体课件,让学生通过课件进行探究活动,使他们直观、具体、形象地感知知识,进而达到化解难点、突破重点的目的。教学目标1、 认知目标(1) 知道三角形中位线的概念,明确三角形中位线与中线的不同。(2) 理解三角形中位线定理,并能运用它进行有关的论证和计算。(3) 通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力2、 能力目标引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生观察问题、分析问题和解决问题的能力。3、 德育目标对学生进行事物之间相互转化的辩证的观点的教育。4、 情感目标利用课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。教学重难点【重点】:三角形中位线定理【难点】:难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用三、教学过程分析本节课设计了七个教学环节:第一环节:创设情景,导入课题;第二环节:教师讲授、传授新知;第三环节:师生共析、证明定理;第四环节:灵活运用、自我检测;第五环节:回顾小结、共同提升;第六环节:分层作业,拓展延伸;第七环节:课后反思。第一环节:创设情景,导入课题.怎样将四张全等三角形纸片拼成一个三角形?你能将这四个全等的三角形拼成一个平行四边形吗?2.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形? 操作:(1)剪一个三角形,记为ABC (2)分别取AB,AC中点D,E,连接DE (3) 沿DE将ABC剪成两部分,并将ABC绕点E旋转180,得四边形BCFD.3、思考:四边形ABCD是平行四边形吗?4、探索新结论:若四边形ABCD是平行四边形,那么与有什么位置和数量关系呢?目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连串的递进问题,启发学生逆向类比猜想:,由此引出课题。效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。第二环节:教师讲授,传授新知内容: 引入三角形中位线的定义和性质1定义三角形的中位线,强调它与三角形的中线的区别2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半目的:通过学生前期的猜测,测量,初步感知三角形中位线的定理和性质。第三环节:师生共析,证明定理内容:已知:如图6-20(1),DE是ABC的中位线.求证:DEBC,DE=BC证明:如图6-20(2),延长DE到F,使DE=EF,连接CF.在ADE和CFE中AE=CE,1=2,DE=FEADECFEA=ECF,AD=CFCFABBD=ADBD=CF四边形DBCF是平行四边形DFBC,DF=BCDEBC,DE=BC目的:通过严密的几何证明将三角形中位线定理进行证明,由感性到理性,使学生经历定理的探究过程,积累数学活动的经验.第四环节:分层练习,自我检测,C组1. A、B两点被池塘隔开,在没有任何测量工具的情况下,小明通过下面的 方法估测出了A,B间 的距离:在AB外选一点C,连结AC和BC,并分别 找出AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为什么 ? 2已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为 cm,面积为 cm2,为原三角形面积的 。B组1如图,顺次连结四边形四条边的中点,所得的四边形有什么特点?2.已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94求证:四边形EFGH是平行四边形A组如图,在四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点 。四边形EGFH是平行 四边形吗?请证明你的结论。 目的:巩固三角形中位线定理,同时也兼顾平行四边形判定定理的熟练运用.第五环节:回顾小结,共同提升1教师提问引起学生思考: (1)这节课学习了哪些具体内容: (2)用什么思维方法提出猜想的? (3)应注意哪些概念之间的区别? 第六环节:灵活运用,拓展延伸C组习题1. 如图, ABC 中, D ,E 分别为AB,AC 的中点,当BC =10时,则DE = 2.如下图:在Rt ABC中,A=90,D、E、F分别是各边中点, AB=6cm,AC=8cm,则DEF的周长= cm。 三角形DEF面积= B组习题如图,等边三 角形ABC 的边长是2,D,E分别为AB,AC的中点,延长BC 至点 F,使 2CF=BC,连接 CD和 EF. ( 1)求证: DE=CF; (2)求 EF的长. A组习题1. 如图已知四边形ABCD中,BC=2AB=10, B=60 。 R 、 E、F分别是BC、 AP、RP的中点, P点是CD上的任意一点,求EF长度。第七环节: 课后反思本节课以探究三角形中位线的性质及证明为主线,开展教学活动。教学过程。教师与学生在互动中有机结合,教学过程是教师的教和学生的学所组成的一种双边活动的过程。首先,在学习三角形中位线的概念时,教师很好的引导学生作图,通过作图,巩固了对中位线的理解,三角形中位线和三角形中线易混淆,让学生作一比较,利于培养学生严谨细致的学习习惯。其次,在学习三角形中位线性质时,先由直观的方法感知DE与BC的位置关系与数量关系,再用说理的方式来证这一关系,既满足了学生探求新
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新农村课件内容
- 新入职员工法务培训课件
- 园艺电商品牌创新创业项目商业计划书
- 低温即食午餐肉创新创业项目商业计划书
- 农产品专卖店创新创业项目商业计划书
- 养殖人工智能养殖辅助创新创业项目商业计划书
- 园林美食之旅创新创业项目商业计划书
- 净化工程科普知识培训课件
- 污泥脱水工艺施工实施计划
- 冻干知识培训2022课件
- 八五普法考试试题及答案
- 商业秘密培训课件
- 中级消防员考试试题及答案
- 教学设计课件比赛封面设计
- 2025年评茶员职业技能鉴定题库(含答案)
- 数学集体备课汇报展示
- 食品生产企业采购管理制度
- 2025年游泳池设施设备器材安全检查制度(二篇)
- 2025年养老护理员职业资格技师培训试题(含答案)
- 《鸿蒙应用开发项目教程》全套教学课件
- 2025考研408计算机基础综合真题及答案
评论
0/150
提交评论