一次函数与一元一次不等式说课稿 教案及反思.doc_第1页
一次函数与一元一次不等式说课稿 教案及反思.doc_第2页
一次函数与一元一次不等式说课稿 教案及反思.doc_第3页
一次函数与一元一次不等式说课稿 教案及反思.doc_第4页
一次函数与一元一次不等式说课稿 教案及反思.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一次函数与一元一次不等式 浙涪友谊学校 青年部 刘娟说课稿教材分析1、地位和作用这一节内容是初中数学新教材八年级上册第十四章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。2、活动目标理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。 总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。3、教学重点: ()理解一元一次不等式与一次函数的转化关系及本质联系()掌握用图象求解不等式的方法教学难点: 图象法求解不等式中自变量取值范围的确定二、学情分析八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。三、学法分析1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。四、教法分析由于任何一个一元一次不等式都能写成ax+b0(或3x+10 当自变量x为何值时函数y=2x-4的值大于0?教师活动:引导学生分别从数和形两个角度理解这两个问题的关系,归纳出一般形式结论。由上面两个问题的关系,我们能得到“解不等式ax+b0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题 由于任何一元一次不等式都可以转化的ax+b0或ax+b0?(3) x取哪些值时, 2x-53?教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。设计意图:问题2可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。学生可以用不同方法解答,教师意图是尽量用图象求解。问题3:用画函数图象的方法解不等式5x+42x+10设计意图: 通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用 教师活动: 引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点学生活动: 在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点 活动过程及结论:方法一:原不等式可以化为3x-60,画出直线y=3x-6的图象,可以看出,当x2时这条直线上的点在x轴的下方即这时y=3x-60,所以不等式的解集为:x2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上的相应点的下方,这时5x+42x+10,所以不等式的解集为:x2以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解这种函数观点认识问题的方法,对于继续学习数学很重要三、巩固练习 当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件? y=-7 y2 利用图象解出x: 6x-43x+2解(1)方法一:作直线y=3x+8的图象从图象上看出:y=-7时对应的自变量x取值为-5,即当x=-5时,y=-7方法二:要使y=-7即3x+8=-7,它可变形为3x+15=0作直线y=3x+15的图象,从图上可看出它与x轴交点横坐标为-5,即x=-5时,3x+15=0所以x=-5时,y=-7(2)方法一:画出y=3x+8的图象,从图象上可以看出当x-2时,对应的函数值都小于2所以自变量x的取值范围是x-2方法二:要使y2即3x+82,它可变形为3x+60,作出直线y=3x+6的图象可以看出它与x轴交点横坐标为-2,只有当x-2时对应的函数值才小于0所以自变量x的取值范围是x-2方法一:6x-43x+2可变形为:3x-60作出直线y=3x-6的图象从图象上可看出:当x2时,这条直线上的点都在x轴下方,即y0,3x-60所以,6x-43x+2的解为x2方法二:作出直线y=6x-4与直线y=3x+2,它们的交点横坐标为2,从图象上可以看出当x2时,直线y=6x-4在直线y=3x+2的下方,即6x+43x+2所以,6x-43x+2的解为x0 利用图象解不等式5x-12x+5 五课时小结 本节我们学会了用一次函数图象来解一元一次不等式虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要六课后作业 习题1433、4、7题七活动与探究 、两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾商场所有商品8折出售,商场消费金额超过200元后,可在这家商场7折购物试问如何选择商场来购物更经济教学反思: 本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一个简单一点的不等式,待学生会将不等式转化为一次函数分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论