免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.3.1 等腰三角形的性质【课题】:等腰三角形的性质【教学时间】:40分钟【学情分析】:(适用于平行班)学习本课内容时,学生已经了解“等腰三角形的有关概念”,掌握了“线段的垂直平分线的性质”. 学生可以通过折叠等腰三角形,观察、归纳、交流等活动发现它的三个性质:对称性,等边对等角,三线合一;但对“三线合一”的理解可能会出现问题,教师再进行课件演示.【教学目标】:知识与技能:1. 掌握等腰三角形“等边对等角”的性质;2. 掌握等腰三角形“三线合一”的性质;3. 归纳证明两个角相等的常用方法.过程与方法:1. 通过实践、观察、证明等腰三角形的性质,培养学生的逻辑推理等能力。2. 通过运用等腰三角形的性质解决有关的问题,提高运用定理分析、解决问题的能力。情感态度价值观:引导学生对图形的观察、发现、激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的信心。【教学重点】:等腰三角形的性质及应用。【教学难点】:等腰三角形的性质证明。【教学突破点】:引入动手操作和直观感知,通过学生折纸、观察、归纳、课件演示、交流等活动,让学生自己去发现等腰三角形的两条重要的性质.【教法、学法设计】:教法:教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法;学法:小组合作,实验操作,观察发现,师生互动,学生互动的学习方式.【课前准备】:课件,等腰三角形模型.【教学过程设计】:教学环节教学活动设计意图一、情景引入一、情境引入 把一张长方形纸对折,任意剪出一个直角边在折线上的直角三角形,把它展开,得到三角形是什么特殊三角形?具有哪些性质呢?这是本节课要研究的内容。 通过情境引入本节课课题。二、学习新知二、探究新知探究:把得到三角形,记为,并将折线的另一端点记为D,如图所示.将等腰沿AD对折再展开,重复几次,观察图形1图中有哪些相等的角?有哪些相等的线段? 2等腰是不是轴对称图形?对称轴是什么? 3等腰除两腰相等外,它的角有什么性质?用语言描述等腰三角形的这条性质并给与证明。4等腰中,AD有几种角色?各是什么?用语言描述等腰三角形的这条性质并给与证明。归纳等腰三角形的性质:性质1 等腰三角形的两个底角相等。即等边对等角.性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。即等腰三角形三线合一.【例1】如图,已知中,D为BC上一点,且AC=AD,2=21.(1)若1=24,求4的度数;(2)若BAC=60,求1的度数. 【解析】(1)AC=AD,3C.2=21,1=24,2=48,C=3=72,4=36.(2) 2=21,C=3=2+1=31,可列方程:21+31+60=180,1=24.【点拨】等腰三角形中,已知任意一个角的度数,都可求其它角的度数,这种意识很重要。等腰三角形的顶角的外角等于底角的2倍,当三角形中已知条件不足时,可考虑利用等角和倍角列方程求解.【例2】如图,已知中,AB=AC,D为BC上一点,G为AD上一点,DEAB于E,DFAC于F,且DE=DF,求证:1=2.【证明】DEAB,DFAC,DE=DF,AD为角平分线,又AB=AC,由“三线合一”知:AD垂直平分BC,GB=GC,由“等边对等角”知:1=2. 【点拨】本题也可以利用全等证明.但如能熟练运用角平分线、线段垂直平分线的性质和“三线合一”,可简化解法.三、当堂训练1等腰三角形顶角为150,则底角度数为_.2. 等腰三角形一个角为70,则其余两个角的度数为 .3等腰三角形的顶角是底角的4倍,则底角为_.4等腰三角形的一个外角为80,则它的底角度数为_.5等腰三角形的两个内角之比为25,则它顶角度数为_.6等腰三角形的两边长分别为5cm和10cm,则其周长为_cm.7如图,在等腰三角形ABC中,顶角A=50,边AC的垂直平分线交AB边于E,则BCE的度数为_.8如图,已知ACBD于E,AB=BC.求证:1=2.9. 如图,中,AB=AC,点D、E、F分别在三边上,G是EF的中点,且BD=CF,BE=CD.求证:DGEF.拓展思维:如图,已知AB=AD,BC=DC.求证:B=D.学生通过观察、思考、描述、证明,养成善于思考、勇于发现、大胆尝试等良好学习习惯。培养学生的语言表达能力、观察能力、归纳能力、进一步加深探究几何命题的方法。巩固等腰三角形“等边对等角”的性质。培养学生运用方程的思想解决问题,把几何知识转化为代数知识。巩固等腰三角形“等边对等角”和“三线合一”。让学生体会运用角平分线、线段垂直平分线的性质和等腰三角形的性质,可简化解法.巩固等腰三角形“等边对等角”的性质,让学生体会等腰三角形中,已知任意一个角的度数,都可求其它角的度数,以及分类讨论的数学思想。培养学生大胆尝试,勇于探索,提高学生的思维能力和证明能力。巩固等腰三角形“三线合一”的性质。巩固证明两个角相等的两种常用方法,培养学生一题多证的学习习惯,提高学生的思维能力和证明能力。四、小结与课后作业四、小结归纳学生本节课的主要收获1. 掌握等腰三角形“等边对等角”的性质。2. 掌握等腰三角形“三线合一”的性质。3. 掌握证明角相等的两种常用方法。五、作业设计 (A组)1.若等腰三角形的两腰长分别为和,则的值为_2. 在ABC中,若ABAC,A=50,则C=_度.3. 在ABC中,若ABAC,B的外角为105,则A_.4.在等腰三角形中,若一个内角为800,则另外两个角的度数是 .5.在等腰三角形中,若一个内角为1100,则另外两个角的度数是 .6. 如图,五角星的五个角都是顶角为360的等腰三角形,为了画出五角星,还需要知道AMB的度数,算一算AMB等于多少度? 7. 如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC,ADBC, BAC=1000,求B,C,BAD,CAD各是多少度? (B组)8. 如图,中,垂直平分,则的度数为(). 9. 等腰三角形的底角比顶角大15,求各内角的度数.10. 等腰三角形的周长为16米,其中一条边的长是6,求另两条边的长. (C组)11. 如图,已经ABAC,BDBC=AD,图中有哪几个三角形是等腰三角形?与C相等的角有哪几个?请简单说明原因.12. 等腰三角形ABC的周长为34厘米,AD为底边上的高,ADC的周长为30厘米,求AD的长.13.如图,在ABC中,AB=AD=DC,BAD=26,求B和C的度数14.如图,点D,E在ABC的边BC上,ABAC,ADAE,求证BDCE巩固知识,培养技能.答案1.6 2.650 3.300 4.800,200或500,500 5.350
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 论文的写作流程
- 经济学本科毕业论文题目与选题
- 工程监理合同是公开招标(3篇)
- 试论潮汕方言词语与古代汉语的历史渊源关系
- 工程合同相关案例分析题(3篇)
- 略论郑观应的商战思想
- 备案表填写说明【模板】
- 人教社2019版高中英语教材语篇分析-以必修一阅读板块为例
- 灌注桩钢筋笼浮笼原因分析及处理方案
- 品牌LOGO设计提案
- GB/T 20805-2025饲料中酸性洗涤木质素(ADL)的测定
- 美甲美睫服务与产品移动店创新创业项目商业计划书
- 2025年信息安全行业投资趋势与盈利模式研究报告
- 文化遗产融资机制分析-洞察及研究
- 小学数学期末成绩质量分析报告
- DBJT15-110-2015 广东省建筑防火及消防设施检测技术规程
- 2024年BRCGS包装材料全球标准第7版全套管理手册及程序文件(可编辑)
- 2025年上海公务员考试(城市建设管理)历年参考题库含答案详解(5卷)
- 学校食品浪费宣传课件
- 红红火火中国年课件
- 交强险培训课件
评论
0/150
提交评论