数学人教版九年级上册二次函数图像及性质.ppt_第1页
数学人教版九年级上册二次函数图像及性质.ppt_第2页
数学人教版九年级上册二次函数图像及性质.ppt_第3页
数学人教版九年级上册二次函数图像及性质.ppt_第4页
数学人教版九年级上册二次函数图像及性质.ppt_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数复习 一 概念 形如y ax2 bx c a b c是常数 a 0 的函数叫做二次函数 其中二次项为ax2 一次项为bx 常数项c 二次项的系数为a 一次项的系数为b 常数项c 1 下列函数中 哪些是二次函数 1 y 3x 1 2 y 3x2 3 y 3x3 2x2 4 y 2x2 2x 1 5 y x 2 x 6 y x2 x 1 x 二次函数图象及画法 顶点坐标 与X轴的交点坐标 与Y轴的交点坐标及它关于对称轴的对称点 x1 0 x2 0 0 c c x1 x2 O x y c c 二 平移 配方 向左 向右 平移 m 个单位 向上 向下 平移 k 个单位 通过配方 1 将函数y x2 4x 5转化成y a x m 2 k的形式 2 将函数y 2x2 4x 5转化成y a x m 2 k的形式 1 由y 2x2的图象向左平移两个单位 再向下平移三个单位 得到的图象的函数解析式为 2 由函数y 3 x 1 2 2的图象向右平移4个单位 再向上平移3个单位 得到的图象的函数解析式为 y 2 x 2 2 3 2x2 8x 5 y 3 x 1 4 2 2 3 3x2 30 x 70 3 抛物线y ax2向左平移一个单位 再向下平移8个单位且y ax2过点 1 2 则平移后的解析式为 y 2 x 1 2 8 4 将抛物线y x2 6x 4如何移动才能得到y x2 逆向思考 由y x2 6x 4 x 3 2 5知 先向左平移3个单位 再向上平移5个单位 三 开口方向 对称轴 顶点坐标 1 开口方向看a的值 2 求对称轴 直线x m 直线x 3 求顶点坐标 m k 1 y x2 2 y x 1 2 3 y x 1 2 3 4 y 2 x 1 2 3 5 y 2x2 3 6 y 3x2 6x 5 1 求下列函数的顶点坐标 7 y 2x2 4x 5 2 已知二次函数y x2 bx c的顶点坐标 1 2 求b c的值 3 已知二次函数y x2 4x c的顶点坐标在x轴上 求c的值 4 已知二次函数y x2 4x c的顶点坐标在直线y 2x 1上 求c的值 求下列函数的最大值 或最小值 和对应的自变量的值 y 2x2 8x 1 y 3x2 5x 1 四 如何求二次函数的最值 当x m时y最小 大 k 3 y 2 x 1 2 3 4 y 2x2 3 2 已知二次函数y x2 4x c有最小值为2 求c的值 3 已知二次函数y 2x2 bx c 当x 2时函数有最大值为2 求b c的值 五 函数的增减性 2 已知抛物线顶点坐标 m k 通常设抛物线解析式为 3 已知抛物线与x轴的两个交点 x1 0 x2 0 通常设解析式为 1 已知抛物线上的三点 通常设解析式为 y ax2 bx c a 0 y a x m 2 k a 0 y a x x1 x x2 a 0 六 求抛物线解析式常用的三种方法 一般式 顶点式 交点式或两根式 1 已知一个二次函数的图象经过点 0 0 1 3 2 8 求下列条件下的二次函数的解析式 3 已知二次函数的图象的对称轴是直线x 3 并且经过点 6 0 和 2 12 2 已知二次函数的图象的顶点坐标为 2 3 且图象过点 3 2 七 判别a b c b2 4ac 2a b a b c的符号 1 a的符号 由抛物线的开口方向确定 开口向上 a 0 开口向下 a 0 2 C的符号 由抛物线与y轴的交点位置确定 交点在x轴上方 c 0 交点在x轴下方 c 0 经过坐标原点 c 0 3 b的符号 由对称轴的位置确定 对称轴在y轴左侧 a b同号 对称轴在y轴右侧 a b异号 对称轴是y轴 b 0 4 b2 4ac的符号 由抛物线与x轴的交点个数确定 与x轴有两个交点 b2 4ac 0 与x轴有一个交点 b2 4ac 0 与x轴无交点 b2 4ac 0 练一练 已知y ax2 bx c的图象如图所示 a 0 b 0 c 0 abc 0b 2a 2a b 0 2a b 0b2 4ac 0a b c 0 a b c 04a 2b c 0 0 1 1 2 填空 1 抛物线y x2 3x 2与y轴的交点坐标是 与x轴的交点坐标是 2 抛物线y 2x2 5x 3与y轴的交点坐标是 与x轴的交点坐标是 0 2 1 0 和 2 0 0 3 1 0 和 1 5 0 八 如何求二次函数图象与坐标轴的交点 3 坐标轴三个交点围成的三角形面积是 3 75 九 如何求当x为何值时 y 0 y 0 y 0 0 当x x1或x x2时 y 0 当xx2时 y 0 当x10 x1 x2 当x x1或x x2时 y 0 当xx2时 y 0 当x1 x x2时 y 0 2 已知二次函数y x2 4x 5 求当x为何值时 y 0 y 0 y 0 1 如图求当x为何值时 y 0 y 0 y 0 十 二次函数与一元二次方程的关系 二次函数y ax2 bx c的图象和x轴交点有三种情况 有两个交点 有一个交点 没有交点 当二次函数y ax2 bx c的图象和x轴有交点时 交点的横坐标就是当y 0时自变量x的值 即一元二次方程ax2 bx c 0的根 有两个交点 有两个相异的实数根 b2 4ac 0 有一个交点 有两个相等的实数根 b2 4ac 0 没有交点 没有实数根 b2 4ac 0 利用二次函数的图象求一元二次方程的近似解 1 根据下列表格的对应值 判断方程ax2 bx c 0 a 0 a b c为常数 一个解的范围是 3 x 3 23 3 23 x 3 24 3 24 x 3 25 3 25 x 3 26 例题分析 例1 已知一抛物线的顶点坐标为 1 2 且过点 1 2 求该抛物线的解析式 例2 已知抛物线 1 将函数化为的形式 2 说出该函数图象可由抛物线如何平移得到 3 说出该函数的对称轴 顶点坐标 最值情况 例2 已知二次函数 1 当k为何值时 函数图象经过原点 2 当k在什么范围取值时 图象的顶点在第四象限 例3 已知抛物线y x2 2x 8 1 求证 该抛物线与x轴一定有两个交点 2 若该抛物线与x轴的两个交点分别为A B 且它的顶点为P 求 ABP的面积 1 已知二次函数y ax2 5x c的图象如图 1 当x为何值时 y随x的增大而增大 2 当x为何值时 y 0 3 求它的解析式和顶点坐标 练一练 2 函数y ax2 ax 3x 1的图象与x轴有且只有一个交点 那么a的值和交点坐标分别为 9或1 3 写出一个开口向下 对称轴是直线x 3 且与y轴交于 0 2 的抛物线解析式 4 已知函数y x2 2x 3 结合图象 试确定x取何值时 y 0 y 0 y 0 5 已知二次函数的图象的顶点坐标为 2 3 且图象过点 3 2 1 求此二次函数的解析式 2 设此二次函数的图象与x轴交于A B两点 O为坐标原点 求线段OA OB的长度之和 6 把抛物线y 3x2绕着它的顶点旋转1800后所得的图象解析式是 y 3x2 7 已知二次函数y a x h 2 k的图象过原点 最小值是 8 且形状与抛物线y 0 5x2 3x 5的形状相同 其解析式为 y 0 5 x 16 2 8 8 若x为任意实数 则二次函数y x2 2x 3的函数值y的取值范围是 9 若抛物线y ax2 2x c的顶点坐标是 2 3 则a c y 2 0 5 1 10 抛物线y 2x2 4x 1是由抛物线y 2x2 bx c向左平移1个单位 再向下平移2个单位得到的 则b c 11 已知抛物线y 2x2 bx 8的顶点在x轴上 则b 12 若二次函数y m 8 x2 2x m2 64的图象过原点 则m 8 3 8 8 13 如果点P 1 a 和点Q 1 b 在抛物线y x2 1上 那么线段PQ的长为 14 已知y x2 12 k x 12 当x 1时 y随x的增大而增大 当x 1时 y随x的增大而减小 则k的值为 2 10 15 已知二次函数y ax2 bx c的图象经过点 1 2 则a b c的值是 16 直线y 2x 3与抛物线y x2 3m 1 x 2m的对称轴交于点 2 1 则m 2 1 17 抛物线y x m x 3 k m与抛物线y x 3 2 4关于原点对称 则m k 18 已知二次函数的图象过 2 0 6 0 两点 且顶点在直线y 0 75x上 求此二次函数的解析式 9 y 0 75 x 4 2 3 选一选抛物线y x2 4x 3的对称轴是 A直线x 1B直线x 1C直线x 2D直线x 2 2 抛物线y 3x2 1的 A开口向上 有最高点B开口向上 有最低点C开口向下 有最高点D开口向下 有最低点 3 若y ax2 bx c a 0 与轴交于点A 2 0 B 4 0 则对称轴是 A直线x 2B直线x 4C直线x 3D直线x 3 4 若y ax2 bx c a 0 与轴交于点A 2 m B 4 m 则对称轴是 A直线x 3B直线x 4C直线x 3D直线x 2 c B C A x 5 在同一直角坐标系中 一次函数y ax c和二次函数y ax2 c的图象大致为 B 例1 已知二次函数y ax2 bx c的最大值是2 图象顶点在直线y x 1上 并且图象经过点 3 6 求a b c 解 二次函数的最大值是2 抛物线的顶点纵坐标为2又 抛物线的顶点在直线y x 1上 当y 2时 x 1 顶点坐标为 1 2 设二次函数的解析式为y a x 1 2 2又 图象经过点 3 6 6 a 3 1 2 2 a 2 二次函数的解析式为y 2 x 1 2 2即 y 2x2 4x 综合创新 1 已知抛物线y ax2 bx c与抛物线y x2 3x 7的形状相同 顶点在直线x 1上 且顶点到x轴的距离为5 请写出满足此条件的抛物线的解析式 解 抛物线y ax2 bx c与抛物线y x2 3x 7的形状相同 a 1或 1又 顶点在直线x 1上 且顶点到x轴的距离为5 顶点为 1 5 或 1 5 所以其解析式为 1 y x 1 2 5 2 y x 1 2 5 3 y x 1 2 5 4 y x 1 2 5 2 若a b c 0 a 0 把抛物线y ax2 bx c向下平移4个单位 再向左平移5个单位所到的新抛物线的顶点是 2 0 求原抛物线的解析式 分析 1 由a b c 0可知 原抛物线的图象经过 1 0 2 新抛物线向右平移5个单位 再向上平移4个单位即得原抛物线 答案 y x2 6x 5 练习1 已知抛物线y ax2 bx 1的对称轴是x 1 最高点在直线y 2x 4上 1 求此抛物线的顶点坐标 2 求抛物线解析式 3 求抛物线与直线的交点坐标 解 二次函数的对称轴是x 1 图象的顶点横坐标为1又 图象的最高点在直线y 2x 4上 当x 1时 y 6 顶点坐标为 1 6 例2 已知抛物线y ax2 bx c与x轴正 负半轴分别交于A B两点 与y轴负半轴交于点C 若OA 4 OB 1 ACB 90 求抛物线解析式 解 点A在正半轴 点B在负半轴OA 4 点A 4 0 OB 1 点B 1 0 又 ACB 90 OC 2 点C 0 2 设y a x x 得 a a y x x 问题2这位同学身高1 7m 若在这次跳投中 球在头顶上方0 25m处出手 问 球出手时 他跳离地面的高度是多少 尝试成功 如图 有一次 我班某同学在距篮下4m处跳起投篮 球运行的路线是抛物线 当球运行的水平距离2 5m时 达到最大高度3 5m 然后准确落入篮圈 已知篮圈中心到地面的距离为3 05m 3 05m 2 5m 3 5m 问题1建立如图所示的直角坐标系 求抛物线的解析式 4m 试一试 你知道吗 平时我们在跳绳时 绳甩到最高处的形状可近似的看为抛物线 如图所示 正在甩绳的甲 乙两名学生拿绳的手间距为4米 距地面均为1米 学生丙 丁分别站在距甲拿绳的手水平距离1米 2 5米处 绳子甩到最高处时 刚好通过他们的头顶 已知学生丙的身高是1 5米 请你算一算学生丁的身高 1m 2 5m 4m 1m 甲 乙 丙 丁 0 1 4 1 1 1 5 练习 在矩形荒地ABCD中 AB a BC b a b 0 今在四边上分别选取E F G H四点 且AE AH CF CG x 建一个花园 如何设计 可使花园面积最大 D C A B G H F E a b b 2 如图 在一面靠墙的空地上用长为24米的篱笆 围成中间隔有二道篱笆的长方形花圃 设花圃的宽AB为x米 面积为S平方米 1 求S与x的函数关系式及自变量的取值范围 2 当x取何值时所围成的花圃面积最大 最大值是多少 3 若墙的最大可用长度为8米 则求围成花圃的最大面积 解 1 AB为x米 篱笆长为24米 花圃宽为 24 4x 米 3 墙的可用长度为8米 2 当x 时 S最大值 36 平方米 S x 24 4x 4x2 24x 0 x 6 0 24 4x 84 x 6 当x 4m时 S最大值 32平方米 3 某企业投资100万元引进一条产品加工生产线 若不计维修 保养费用 预计投产后每年可创利33万 该生产线投产后 从第1年到第x年的维修 保养费用累计为y 万元 且y ax2 bx 若第1年的维修 保养费用为2万元 到第2年为6万元 1 求y的解析式 2 投产后 这个企业在第几年就能收回投资 解 1 由题意 x 1时 y 2 x 2时 y 2 4 6 分别代入y ax2 bx 得a b 2 4a 2b 6 解得 a 1 b 1 y x2 x 2 设g 33x 100 x2 x 则g x2 32x 100 x 16 2 156 由于当1 x 16时 g随x的增大而增大 故当x 4时 即第4年可收回投资 问题4 某商场将进价40元一个的某种商品按50元一个售

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论