




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.3.2多边形的内角和(教学设计)一、教学目标1、知识与技能:(1)探索并了解多边形的内角和公式。(2)能对多边形的内角和公式进行应用,解决实际问题。(3)掌握多边形的外角和定理,并能运用。2、过程与方法:(1)通过分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。二、教学重难点重点:多边形内角和定理与外角和定理的推导及运用。难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。三、教法:启发式、探索式四、学法:自主探索、合作交流 五、教学过程:(一)温故知新,导入新课1. 从n边形的一个顶点可以引条对角线, 将n边形分成了_个三角形. 2、n边形的对角线一共有_ 条.问题1:你还记得三角形内角和是多少度吗?问题2:你知道长方形和正方形的内角和是多少吗?设置意图:老师指出三角形是最简单的多边形,三角形的内角和是180度,那多边形的内角和是多少呢?从而顺利引入新课。过渡语:我们知道三角形的内角和等于180度,正方形,长方形的内角和等于360度,那么任意四边形、五边形、六边形呢?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。”(板书课题)(二、)合作交流、探究新知活动一:探究 “任意四边形的内角和”问题1:任意四边形的内角和是多少度?你是怎样得到的?你能找到几种方法?活动任务:用所需知识探索四边形的内角和活动要求:在探究四边形的内角和时,有的同学不是用量角器度量、计算得到,而是 按照如图所示,利用辅助线将四边形分割成两个三角形的方法,利用三角形内角和等于180,得到四边形内角和等于360。你能说明它的合理性吗?并且启发你能否借助辅助线找到不同的分割方法呢?用同样的方法探究 “任意五边形的内角和”交流展示:组织学生以小组为单位进行展示,结合学生的回答教师适时搭建支架,引导学生发现利用数学转化思想,把求多边形的内角和的问题转化为求若干三角形的内角和,关键是将n边形分割转化为三角形。预设学生1:过四边形一个顶点,作四边形的一条对角线,把四边形分成两个三角形,这样进行转化得到结论四边形的内角和为:2180= 360预设学生2:可以在四边形的内部找一个点与四个顶点连接,将四边形分成四个三角形这样进行转化得到结论四边形的内角和为:4180360= 360预设学生3:可以在四边形的一边上找一个点与四个顶点连接,将四边形分成三个三角形这样进行转化得到结论四边形的内角和为:3180180= 360预设学生4:可以在四边形的外部找一个点与四个顶点连接,将四边形分成四个三角形这样进行转化得到结论四边形的内角和为:3180180= 360设置意图:针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,体验解决问题策略的多样性。活动二:探究 “多边形的内角和”问题1:类比四边形的内角和,你能算出五边形、六边形、七边形的内角和吗?活动任务:用用尽可能多的方法探索五边形、六边形、七边形的内角和。活动要求:自主探究,得出结论交流展示:找代表上台展示探索过程,其他不同方法者补充。预设学生1:可以利用三角形的内角和。过五边形一个顶点,作五边形的两条对角线,把五边形分成三个三角形,这样进行转化得到结论。预设学生2:利用分割的方式,将五边形分割为1个三角形1个四边形;将六边形分割为1个三角形1个五边形或2个四边形;七边形的分割更多。设置意图:继续让学生体会多种分割形式,有利于深入领会转化的本质转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。问题2:你能想出六边形和七边形的内角和各是多少吗?六边形的内角和:4180=720 七边形的内角和:5180=900 问题3:多边形的内角和与多边形的边数有什么关系?活动任务:让学生自己归纳总结,得出n边形的内角和公式为(n-2)180 活动要求:自主探究,得出结论交流展示:找代表上台展示探索过程,其他不同方法者补充。难点分解:从五边形、六边形一个顶点作对角线,可引多少条对角线?可把多边形分成多少个三角形?内角和是多少?分成的三角形的个数与多边形的边数有什么关系?n边形从一个顶点可作多少条对角线?可构成多少个三角形?内角和怎样求?为什么?你能得出求n边形内角和的公式吗?规律探究:多边形边数一个顶点出发的对角线条数图形分成三角形的个数内角和的计算规律三角形四边形五边形六边形七边形n边形多媒体展示其他分割方法归纳结论:n边形的内角和等于(n2)180(n是大于等于3的整数)。设置意图:从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。(三)、应用新知 尝试练习 1、8边形的内角和等于多少度? 十边形呢?2、如果一个多边形的内角和是1440度,那么这是 边形。3已知一个多边形每个内角都等于 108 ,求这个多边形的边数?4、 解决问题:例1、如果一个四边形的一组对角互补,那么另一组对角有什么关系5、 十二边形的内角和是( ).6、 一个多边形当边数增加1时,它的内角和增加( ).7、 一个多边形的内角和是720,则此多边形共有( )个内角.8、 如果一个多边形的内角和是1440,那么这是( )边形.活动任务:让学生利用并熟练掌握n边形的内角和公式(n-2)180。活动要求:通过做例题和练习来巩固新知识交流展示:指名回答,其他不同者补充。设置意图:通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。活动三:探究多边形的外角和问题1:在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和。六边形的外角和等于多少度?问题2:如果将六边形换成n边形(n是大于等于3的整数),结果还相同吗?活动任务:让学生归纳六边形以及n边形的外角和为360活动要求:1、自主探究,得出结论2、小组交流,汇总小组意见交流展示:找代表上台展示探索过程,其他不同方法者补充。师可拆分问题,使难点分解:(1)任何一个外角与同它相邻的内角有什么关系?(2)六边形六个外角加上与它们相邻的内角总和是多少?(3)上述总和与六边形的内角和、外角和有什么关系?探索预设:利用外角与相邻内角的互补关系,多边形的内角和公式即可求出外角和为360度。(四)、课堂小结:问题:本节课我们探索了多边形的内角和多边形的外角和有关知识接下来我们一起来梳理一下,我们可以从哪些方面来总结我们的收获呢?预设1:学生能从知识、探索过程和思想方法三个方面进行总结;预设2:学生不能有条理的从三个方面进行分类总结。教师引导语预设:当学生不能有条理的从三个方面进行分类总结时,教师可结合现有的板书,引导学生回忆学习过程:探索过程可结合本节课的学习方式进行回忆:发现问题、提出问题、分析问题和解决问题。教师补充解释:在知识总结中,教师补充:在多边形的内角和推导方法中,我们一般用多边形的对角线分割多边形。分割的方法并不是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于精益创业理论的IT项目风险管理研究-洞察及研究
- 中草药加工项目市场调研与可行性分析
- ESG投资对基金行业投资决策的影响-洞察及研究
- 菱形性质判定教学学案设计
- 农业生态平衡与保护-洞察及研究
- 电动汽车保险市场趋势分析-洞察及研究
- 环境放射性污染与修复技术探索-洞察及研究
- 协议设计在跨平台应用-洞察及研究
- 生物多样性保护中的基因检测技术-洞察及研究
- 2025年临沂沂河新区部分事业单位公开招聘教师(49名)模拟试卷及答案详解(新)
- 2025年天津市春季高考升学考试全真模拟试卷(二)中职英语(无答案)
- 古代汉语平仄试题及答案
- 马工程《艺术学概论》-绪论省公开课一等奖全国示范课微课金奖课件
- 汉服妆造培训课件
- 电能质量控制与安全标准手册
- 2025年自愿放弃房屋经营权协议书模板
- 巡视巡察工作流程
- 中秋国庆教师廉洁教育
- 产品安全防护培训课件
- 2024年中国信创产业发展白皮书(精简版)
- 人教版七年级有理数加减混合运算题集锦
评论
0/150
提交评论