




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.已知椭圆G:,过点(m,0)作圆 的切线l交椭圆G于A,B两点。(1)求椭圆G的焦点坐标和离心率;(2)将表示为m的函数,并求的最大值。(19)解:()由已知得所以所以椭圆G的焦点坐标为,离心率为()由题意知,.当时,切线l的方程,点A、B的坐标分别为此时当m=1时,同理可得当时,设切线l的方程为由;设A、B两点的坐标分别为,则;又由l与圆所以由于当时,因为且当时,|AB|=2,所以|AB|的最大值为2.已知椭圆的离心率为,右焦点为(,0),斜率为I的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(I)求椭圆G的方程;(II)求的面积.(19)解:()由已知得解得,又所以椭圆G的方程为()设直线l的方程为由得设A、B的坐标分别为AB中点为E,则;因为AB是等腰PAB的底边,所以PEAB.所以PE的斜率解得m=2。此时方程为解得所以所以|AB|=.此时,点P(3,2)到直线AB:的距离所以PAB的面积S=17(本小题满分13分)已知直线l:y=x+m,mR。(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。17本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想。满分13分。解法一:(I)依题意,点P的坐标为(0,m)因为,所以,解得m=2,即点P的坐标为(0,2)从而圆的半径故所求圆的方程为(II)因为直线的方程为所以直线的方程为由,(1)当时,直线与抛物线C相切(2)当,那时,直线与抛物线C不相切。综上,当m=1时,直线与抛物线C相切;当时,直线与抛物线C不相切。解法二:(I)设所求圆的半径为r,则圆的方程可设为依题意,所求圆与直线相切于点P(0,m),则解得所以所求圆的方程为21.(2)(本小题满分7分)选修4-4:坐标系与参数方程在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值(2)选修44:坐标系与参数方程本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想。满分7分。解:(I)把极坐标系下的点化为直角坐标,得P(0,4)。因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,(II)因为点Q在曲线C上,故可设点Q的坐标为,从而点Q到直线的距离为18.(本小题满分12分)如图,直线l:yxb与抛物线C:x24y相切于点A。()求实数b的值;()求以点A为圆心,且与抛物线C的准线相切的圆的方程。18本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想,满分12分。解:(I)由,(*)因为直线与抛物线C相切,所以解得b=-1。(II)由(I)可知,解得x=2,代入故点A(2,1),因为圆A与抛物线C的准线相切,所以圆A的半径r等于圆心A到抛物线的准线y=-1的距离,即所以圆A的方程为19. (本小题满分14分)设圆C与两圆中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程.(2)已知点且P为L上动点,求的最大值及此时点P的坐标.19 (1)解:设C的圆心的坐标为,由题设条件知化简得L的方程为(2)解:过M,F的直线方程为,将其代入L的方程得 解得 因T1在线段MF外,T2在线段MF内,故 ,若P不在直线MF上,在中有 故只在T1点取得最大值2。21(本小题满分14分) 在平面直角坐标系中,直线交轴于点A,设是上一点,M是线段OP的垂直平分线上一点,且满足MPO=AOP(1)当点P在上运动时,求点M的轨迹E的方程;(2)已知T(1,-1),设H是E 上动点,求+的最小值,并给出此时点H的坐标;(3)过点T(1,-1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线的斜率k的取值范围。21(本小题满分14分) 解:(1)如图1,设MQ为线段OP的垂直平分线,交OP于点Q, 因此即 另一种情况,见图2(即点M和A位于直线OP的同侧)。 MQ为线段OP的垂直平分线, 又 因此M在轴上,此时,记M的坐标为 为分析的变化范围,设为上任意点 由(即)得, 故的轨迹方程为 综合和得,点M轨迹E的方程为(2)由(1)知,轨迹E的方程由下面E1和E2两部分组成(见图3): ; 当时,过作垂直于的直线,垂足为,交E1于。 再过H作垂直于的直线,交 因此,(抛物线的性质)。 (该等号仅当重合(或H与D重合)时取得)。 当时,则 综合可得,|HO|+|HT|的最小值为3,且此时点H的坐标为 (3)由图3知,直线的斜率不可能为零。 设 故的方程得: 因判别式 所以与E中的E1有且仅有两个不同的交点。 又由E2和的方程可知,若与E2有交点, 则此交点的坐标为有唯一交点,从而表三个不同的交点。 因此,直线的取值范围是4将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为,则 C A B C D14过点(1,2)的直线l被圆截得的弦长为,则直线l的斜率为_。1或如图7,椭圆的离心率为,轴被曲线截得的线段长等于的长半轴长。()求,的方程;()设与轴的交点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.(i)证明:;(ii)记MAB,MDE的面积分别是.问:是否存在直线,使得=?请说明理由。解析:(I)由题意知,从而,又,解得。故的方程分别为。(II)(i)由题意知,直线的斜率存在,设为,则直线的方程为.由得,设,则是上述方程的两个实根,于是。又点的坐标为,所以故,即。(ii)设直线的斜率为,则直线的方程为,由解得或,则点的坐标为,又直线的斜率为,同理可得点B的坐标为.于是由得,解得或,则点的坐标为;又直线的斜率为,同理可得点的坐标为于是因此由题意知,解得或。又由点的坐标可知,所以故满足条件的直线存在,且有两条,其方程分别为和。湖南文6设双曲线的渐近线方程为则的值为( )A4 B3 C2 D1答案:C解析:由双曲线方程可知渐近线方程为,故可知。9在直角坐标系中,曲线的参数方程为在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为则与的交点个数为 答案:2解析:曲线,曲线,联立方程消得,易得,故有2个交点。15已知圆直线(1)圆的圆心到直线的距离为 (2) 圆上任意一点到直线的距离小于2的概率为 答案:5,解析:(1)由点到直线的距离公式可得;(2)由(1)可知圆心到直线的距离为5,要使圆上点到直线的距离小于2,即与圆相交所得劣弧上,由半径为,圆心到直线的距离为3可知劣弧所对圆心角为,故所求概率为.21已知平面内一动点到点F(1,0)的距离与点到轴的距离的等等于1(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值解析:(I)设动点的坐标为,由题意为化简得当、所以动点P的轨迹C的方程为(II)由题意知,直线的斜率存在且不为0,设为,则的方程为由,得设则是上述方程的两个实根,于是 因为,所以的斜率为设则同理可得:故当且仅当即时,取最小值1618.(本小题满分16分)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.(1)当直线PA平分线段MN时,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k0,求证:PAPB.答案:(1)由题意知M(-2,0),N(0,),M、N的中点坐标为(-1,),直线PA平分线段MN时,即直线PA经过M、N的中点,又直线PA经过原点,所以.(2)直线,由得,AC方程:即:所以点P到直线AB的距离(3)法一:由题意设,A、C、B三点共线,又因为点P、B在椭圆上,两式相减得:.法二:设,A、C、B三点共线,又因为点A、B在椭圆上,两式相减得:,法三:由得,直线代入得到,解得,解析:本题主要考查椭圆的标准方程与几何性质,直线的斜率及其方程,点到直线距离公式、直线的垂直关系的判断.另外还考查了解方程组,共线问题、点在曲线上,字母运算的运算求解能力, 考查推理论证能力.(1)(2)是容易题;(3)是考察学生灵活运用、数学综合能力是难题.14. 若椭圆的焦点在轴上,过点作圆的切线,切点分别为,直线恰好经过椭圆的右焦点和上顶点,则椭圆方程是 .【答案】【解析】作图可知一个切点为(1,0),所以椭圆.分析可知直线为圆与以为圆心,为半径的圆的公共弦.由与相减得直线方程为:.令,解得,又,故所求椭圆方程为:江西文10如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在源点O处,一顶点及中心M在Y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成今使“凸轮”沿X轴正向滚动有进,在滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为答案:A 根据中心M的位置,可以知道中心并非是出于最低与最高中间的位置,而是稍微偏上,随着转动,M的位置会先变高,当C到底时,M最高,排除CD选项,而对于最高点,当M最高时,最高点的高度应该与旋转开始前相同,因此排除B ,选A。12.若双曲线的离心率e=2,则m=_.答案:48. 解析:根据双曲线方程:知,并在双曲线中有:,离心率e=2=,m=4819.(本小题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于()两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值解析:(1)直线AB的方程是所以:,由抛物线定义得:,所以p=4,抛物线方程为:(2)、由p=4,化简得,从而,从而A:(1,),B(4,)设=,又,即8(4),即,解得。(20)(本小题满分12分)在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上(I)求圆C的方程;(II)若圆C与直线交于A,B两点,且求a的值(20)解: ()曲线与y轴的交点为(0,1),与x轴的交点为(故可设C的圆心为(3,t),则有解得t=1.则圆C的半径为所以圆C的方程为()设A(),B(),其坐标满足方程组:消去y,得到方程由已知可得,判别式因此,从而 由于OAOB,可得又所以 ;由,得,满足故在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.()求的最小值;()若?,(i) 求证:直线过定点;(ii)试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由. (I)解:设直线,由题意,由方程组得,由题意,所以设,由韦达定理得所以由于E为线段AB的中点,因此此时所以OE所在直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水沟项目工程方案
- 大学之道的考试题及答案
- 湖南省农业农村厅直属事业单位招聘考试真题2025
- 2025风水咨询服务合同
- 2025商品房买卖合同模板
- 合伙众筹协议书范本
- 中国漂白凝胶项目商业计划书
- 急救证考试试题及答案
- 机械员考试试题及答案2025
- 居间协议书 违约金 20
- 2025年高考真题分类汇编必修三 《政治与法治》(全国)(解析版)
- 2025至2030中国船员服务市场发展态势及前景规划研究报告
- 机器学习原理及应用课件:回归分析
- 2025年能源消耗在化工行业的节能减排可行性分析报告
- 2025-2030生鲜电商前置仓选址模型优化与配送效率提升分析报告
- 2025年康复运动处方设计模拟测试卷答案及解析
- 群众文保员管理办法
- 竹围栏施工方案范本
- 手绘植物花卉课件
- 液氧安全知识培训课件
- 土耳其移民合同范本
评论
0/150
提交评论