全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附件:教学设计方案模版教学设计方案课程三角形中位线课程标准三角形的中线、角平分线、高线在解决几何问题时应用广泛。而三角形的中位线是另一个重要线段,应用三角形的中位线可以解决几何中线段平行与线段倍数的问题。它是利用平行四边形的性质得出的,通过添加辅助线,转化为平行四边形进行解决,让学生充分体会转化的思想。教学内容分析【新人教版八年级下册】本节课由一个情景问题引入,让学生感受数学与生活的联系。加上一个三角形学具,类比三角形的中线引出中位线。接着通过操作活动,让学生探究得出中位线的性质,并进行逻辑证明。结合题目让学生巩固中位线的性质,培养学生的解题基本功,以及规范的过程,条理清晰的解题习惯。教学目标1.帮助学生理解三角形中位线的概念,掌握它的性质2让学生能较熟练地应用三角形中位线性质进行有关的证明和计算3学生在经历探索、猜想、证明的过程,进一步发展推理论证的能力并能运用综合法证明有关三角形中位线性质的结论理解在证明过程中所运用的归纳、类比、转化等思想方法学习目标1.理解三角形中位线的概念,掌握它的性质2.能较熟练地应用三角形中位线性质进行有关的证明和计算3.经历探索、猜想、证明的过程,进一步发展推理论证的能力4.能运用综合法证明有关三角形中位线性质的结论理解在证明过程中所运用的归纳、类比、转化等思想方法学情分析学生已经了解了很多演绎推理的过程、思路和方法。数学思想及数学方法上,在前面的数学学习中,也渗透、领悟了不少,如类比思想、转化思想等。学习方法上,真正地把课堂还给学生,让学生作为课堂的主人。重点、难点重点:掌握和运用三角形中位线的性质难点:三角形中位线性质的证明(辅助线的添加方法)教与学的媒体选择PPT课程实施类型偏教师课堂讲授类偏自主、合作、探究学习类备注探索,讲练结合教学活动步骤序号1一、知识准备:2二、探索新知:【基本概念】3三、探索新知【探索定理】4四、学生练习【巩固练习】教学活动详情教学活动1:知识准备:活动目标平行四边形的证明解决问题证明三角形中位线技术资源PPT常规资源一、知识准备:1. 两组对边分别 的四边形是平行四边形. 2. 两组对角分别 的四边形是平行四边形 3. 对角线 的四边形是平行四边形DCB AO活动概述学生做题,教师讲解教与学的策略练习,回答,讲解反馈评价良好,学生对平行四边形判定知识掌握较好教学活动2:探索新知:【基本概念】活动目标探索新知解决问题中位线技术资源PPT,常规资源二、探索新知:【基本概念】自主学习,合作探究活动:动手操作:画三角形,引导学生概括出中位线的概念。问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。【探索定理】三角形中位线定理:(3)猜想:DE与BC的关系?(位置关系与数量关系)小结:三角形的中位线平行于第三边且等于第三边的一半(4)证明:已知,如图,D、E分别是ABC的边AB、AC的中点.求证:DEBC,三、范例学习,应用新知例:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA中点求证:四边形EFGH是平行四边形四、牛刀小试1.如图,ABC中,D、E分别是AB、AC中点(1)若DE=5,则BC = (2)若B=65,则ADE = &网(3)若DE+BC=12,则BC =2.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20m,那么A、B两点的距离是理由是 3.在ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是 4.已知:三角形的各边分别为8cm、10cm和12cm,连结各边中点所成三角形的周长为_ _ 五、小结:中位形定义、定理六、作业:课本49页1.2题和51页11题活动概述探索
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版慢性肾炎症状解析及护理方法
- 孩子教育问题教育讲座
- 肝炎常见症状及护理护理手段
- 现代企业管理慕课版实训
- 编程猫小火箭产品介绍
- 内科支气管哮喘病人的护理
- 商铺转让协议书
- 计算机网络的通信协议书
- 贾静雯离婚协议书
- 销售佣金协议书范本
- 2025下半年新疆维吾尔自治区地质局招聘事业单位人员151人考试模拟试题及答案解析
- 厂房建设项目监理实施细则模板
- 2025博士考试历年真题及答案
- 2025年IPA国际注册对外汉语教师资格认证考试真题卷及答案
- 2025年国家保安员技能证书考试题库(含答案)
- 2025年执业药师《法规》真题及答案
- 2025年生产调度计划与技术创新研究报告
- 2025年煤矿特种作业人员井下电钳工考试练习题(附答案)
- 鸦片战争课件
- 蜜雪冰城管理学案例
- 智能化工程应急预案的措施
评论
0/150
提交评论