



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.2.2菱形教学设计教学目标:知识与技能:理解并掌握菱形的定义及性质定理1、2。应用菱形的性质等知识解决一些世界问题。过程与方法:经历探索菱形的性质和基本概念的过程,在操作、观察、分析过程中发展学生思维意识,体会几何说理的基本方法。情感态度与价值观:培养学生主动探究的习惯和严密的思维意识,在探究活动中建立学生的自信心。重点:菱形的性质1、2的探究。难点:菱形的性质1、2的探究及应用。教具:矩形纸片、剪刀、三角板创设情境:观看世界吉尼斯纪录的视频世界最大的菱形,一个神奇的壮举。引出课题特殊的平行四边菱形。引导探究:探究一菱形的定义。师:在平行四边形中,如果保持角的度数不变,改变边的长度能否得到一个特殊的平行四边形?师利用PPT演示平行四边形转化菱形的过程。让学生体验什么是菱形。 平行四边形 菱形邻边相等得出菱形定义:一组邻边相等的平行四边形叫做菱形。 请同学们判断这句话是否正确?为什么? 师:一组邻边相等的四边形叫做菱形。 (学生回答。)(目的:加深学生对菱形概念的理解) 师:对于菱形的定义,我们需要掌握两点:(1)一组邻边相等;(2)平行四边形。 通过对定义的理解,师强调:菱形是平行四边形,且是一个特殊的平行四边形。 师:在我们日常生活中,菱形图案是很常见的。谁能够举出一些菱形图案的例子? (学生举出身边的一些菱形图案。) 师:利用PPT演示生活中一些常见的菱形图案。 师:因为菱形是一个特殊的平行四边形,因此菱形具有平行四边形的所有性质。 师:思考:平行四边形的性质有哪些? (学生回答。) 师:那么菱形除了具有平行四边形所有性质外,还具有哪些本身所特有的性质?下面请同学们拿出事先准备好的矩形纸片,来制作一个菱形,我们一起来研究菱形的性质。 探究二菱形的性质。 师:请同学们拿出矩形纸片、剪刀,按照下面的要求,我们一起来做一个菱形的纸片。要求:将一张矩形的纸片对折、再对折,在有折痕的两边上各取一点连接成线(图中的虚线)沿此线剪下,打开就得到一个菱形。 师:请同学们观察菱形纸片。从制作的过程中,你能否找到下面几个问题的答案吗?(学生小组为单位,互相交流,探究下面问题,得出结论。)师给出问题:1、它是轴对称图形吗?有几条对称轴? 2、对称轴之间有什么位置关系? 3、有哪些线段是相等的?哪些角是相等的?(在探究过程中,师深入小组进行指导。)生总结菱形的性质:(1)菱形的四条边都相等。(2)菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。师:同学们总结的非常好。那么我们如何证明菱形的性质呢?(老师给出已知,求证,做出适当分析。学生自己证明。)交流评价:探究三菱形的面积公式。师:因为菱形是一个特殊的平行四边形,所以菱形的面积我们可以表示为:底乘高。还有没有其它的方法求菱形的面积呢?思考:如果已知菱形的两条对角线的长,能求出它的面积吗?已知:菱形ABCD两条对角线BD、AC长分别是6cm和8cm,求菱形的面积。分析:菱形的对角线互相垂直,所以两条对角线把菱形分成了四个直角三角形。菱形是特殊的平行四边形,所以它的对角线互相平分,如下图所示,即OA=OC,OB=OD,所以AOBBOCCODDOA。直角三角形的面积等于两直角边乘积的一半,所以说。 应用训练:1、例2如图,菱形花坛ABCD的边长为20m,ABC60,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积。解:花坛ABCD是菱形。ACBD,在RtOAB中, 花坛的两条小路长AC2AO20(m)花坛的面积2、练
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人养老金制度推动下2025年金融市场投资产品创新与市场拓展的影响报告
- 2025年高速压片机行业当前市场规模及未来五到十年发展趋势报告
- 2025年特钢行业当前发展趋势与投资机遇洞察报告
- 2025年漏电断路器行业当前市场规模及未来五到十年发展趋势报告
- 2025年酒类防伪行业当前发展趋势与投资机遇洞察报告
- 孤儿院基础知识培训内容课件
- 《创建高级路由型互联网》课件-第5章-BGP
- 教育行业面试热点与题目
- 求职面试宝典:武汉文员面试题库深度解读
- 求职必 备:沁阳中面试题库深度解析
- 2024年云南省临沧市遴选公务员笔试真题及解析
- 运用PDCA循环管理提高手卫生依从性
- JGJT251-2011建筑钢结构防腐蚀技术规程
- HG/T 2952-2023 尿素二氧化碳汽提塔技术条件 (正式版)
- DZ∕T 0054-2014 定向钻探技术规程(正式版)
- 福建省泉州市五中七中等七校联合2022-2023学年八年级上学期期末教学质量检测数学试题
- 预防老年人保健品骗局
- 安全生产培训(完整版)课件
- 钢结构长廊施工方案
- 信保业务自查问题统计表
- 年产3万吨环保型铝箔容器系列产品生产线项目环境影响报告
评论
0/150
提交评论