复变函数复习题.doc_第1页
复变函数复习题.doc_第2页
复变函数复习题.doc_第3页
复变函数复习题.doc_第4页
复变函数复习题.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一填空题1 复数的实部是,虚部是, 辐角是2 函数的单值解析区域是3 若函数在区域内解析,则二解方程:三 如果级数在点处收敛,证明该级数在内绝对收敛四 试讨论函数的解析性五 利用Cauchy积分公式计算积分六 求函数在圆环域内的罗朗展式七设是函数和的孤立奇点,但不是它们的本性奇点。试说明为函数的孤立奇点的类型。八 设在解析,是的一级极点,且,证明。九 计算积分。部分参考答案:一1.,2.负实轴3.二.五. 六. 九一 填空题1 复数的实部是,虚部是, 模是主辐角是2 复函数将平面上的直线映成平面上的曲线,此曲线方程为3 函数在可导,在解析4 函数的孤立奇点有,其类型为5 欲把函数在以为中心的区域内展成罗朗级数,其展开范围有二 设为调和函数,试求其共轭调和函数及解析函数三 设在区域内解析,在内是一个常量,试证在内是一个常量。四 求出下列函数的奇点,指出其类型,是极点还须说明其级。1;2.五 计算积分, 其中正向六 求函数分别在区域(1);(2);(3)内的罗朗展式七 利用留数定理计算实积分八 叙述并证明柯西积分公式。部分参考答案:一3.;4.,三级极点;5四孤立奇点为;是一级极点,是三级极点孤立奇点为,为可去奇点五六.(1) (2) (3) 七一 填空题1 复数的形式是2 方程组的解是和3 的周期是;的周期是。4 的主值的模是5 如果的收敛半径是, 则的收敛半径是6 如果是的级极点,是的级极点,则它是的可去奇点的条件是和7 函数关于的表达式是二 讨论函数在复平面上的连续性、可导性和解析性。三 叙述Cauchy积分公式和解析函数的高阶导数公式,并利用其计算积分, 其中正向四 设为调和函数,试求其共轭调和函数及解析函数五 如果级数在点处收敛,证明该级数在内绝对收敛(Abel定理)六 求函数在圆环域内的罗朗展式,并求七 判断函数的孤立奇点的类型。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论