




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
涂色问题1.要给地图A,B,C,D四个区域分别涂上红、黄、蓝3种颜色中的某一种,允许同一种颜色使用多次,但相邻的区域必须涂不同的颜色,不同的涂法有多少种?2.将四种不同颜色涂入五个区域,相邻两个区域两个区域颜色都不相同,有多少种不同的涂法?3.用四种不同的颜色将正方形1,2,3,4四个小方格涂色,要求每一个方格只涂一种颜色,且相邻的方格不涂相同的颜色,求不同的涂色方法?4.如图,一环形花坛分成A,B,C,D四块,先有4种不同的花选种,要求在每块里种1种花,且相邻的2块种相同的花,则不同的种法总数是5.用5种不同颜色给四棱锥顶点涂色,要求同棱不同色,有多少种不同涂法?练习:1、有10个车站,共需要准备多少种车票?2有10个车站,共有多少中不同的票价?平面内有10个点,共可作出多少条不同的有向线段?有10个同学,假期约定每两人通电话一次,共需通话多少次?从10个同学中选出2名分别参加数学和物理竞赛,有多少种选派方法?以上问题中,属于排列问题的是 (填写问题的编号)2、从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有多少中不同的种植方法?3、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列4、一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、外语、微机、体育、地理六节课,要求上午不排体育,数学必须排在上午,微机必须排在下午,共有多少种不同的排法?5、由数字0,1,2,3,4,可组成多少个没有重复数字且比20000大的自然数? 6、位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起7、某人射出8发子弹,命中4发,若命中的4发中仅有3发是连在一起的,那么该人射出的8发,按“命中”与“不命中”报告结果,不同的结果有( )720种 480种 24种 20种8、(1)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法有 种。(2)有15个一样的求,分给3个人,每人至少分2个,则有几种不同的分法?(3)将20个相同的小球放入编号为1、2、3、4的四个盒子里,要求每个盒子所分的小球数不少于盒子的编号,则有多少种不同的分法?排列、组合、概率练习题1在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )36个 (B)24个 (C)18个 (D)6个2从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( )108种 (B)186种 (C)216种 (D)270种3某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种 B.36种 C.42种 D.60种4高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是( ) A 1800 (B)3600 (C)4320 (D)50405袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为 6在正方体上任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( ) A B C D7.在AOB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )8.将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()9在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()10将1,2,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为()A B C D11如图,三行三列的方阵中有9个数,从中任取三个数,则至少有两个数位于同行或同列的概率是( )ABCD 12.已知一组抛物线,其中a为2,4,6,8中任取的一个数,b为1,3,5,7中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=1交点处的切线相互平行的概率是(A)(B)(C)(D)13已知集合,从集合,中各取一个元素作为点的坐标,可作出不同的点共有_个. 14安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_种。(用数字作答)15电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).16.在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是_(结果用分数表示)。17.四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_ 18将数字填入标号为的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有 种?19每次抛掷一枚骰子(六个面上分别标以数字(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率;(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。20.二次函数y=ax2+bx+c的系数a、b、c,在集合3,2,1,0,1,2,3,4中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?21.在20件产品中有15件正品,5件次品,从中任取3件,求:1)恰有1件次品的概率;(2)至少有1件次品的概率.22袋中有大小相同的个白球和个黑球,从中任意摸出个,求下列事件发生的概率.(1)摸出个或个白球 (2)至少摸出一个黑球.23个人坐在一排个座位上,问(1)空位不相邻的坐法有多少种?(2) 个空位只有个相邻的坐法有多少种?(3) 个空位至多有个相邻的坐法有多少种?24. 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:()A、B两组中有一组恰有两支弱队的概率;()A组中至少有两支弱队的概率. 答案与点拨:1 B解:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有种方法(2)3个数字中有一个是奇数,有,故共有24种方法,故选B2 B解:从全部方案中减去只选派男生的方案数,合理的选派方案共有=186种,选B.3 D解:有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有种方案,二是在三个城市各投资1个项目,有种方案,共计有60种方案,选D.4 B 解:不同排法的种数为3600,故选B5 A 解:依题意,各层次数量之比为4:3:2:1,即红球抽4个,蓝球抽3个,白球抽2个,黄球抽一个,故选A6 C 解:在正方体上任选3个顶点连成三角形可得=56个三角形,要得等腰直角三角形共有64=24个(每个面内有4个等腰直角三角形),得,所以选C。7.C8.B9.A10B提示:将1,2,3,9平均分成三组的数目为,又每组的三个数成等差数列,种数为4,所以答案为B11.D12.B13 ,其中重复了一次14. 2400 解:先安排甲、乙两人在后5天值班,有=20种排法,其余5人再进行排列,有=120种排法,所以共有20120=2400种安排方法。15. 48 解:分二步:首尾必须播放公益广告的有A22种;中间4个为不同的商业广告有A44种,从而应当填 A22A4448. 从而应填4816.解:在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是.17.3618.919 解:(I)设A表示事件“抛掷2次,向上的数不同”,则答:抛掷2次,向上的数不同的概率为(II)设B表示事件“抛掷2次,向上的数之和为6”。向上的数之和为6的结果有、5种,答:抛掷2次,向上的数之和为6的概率为20 解 由图形特征分析,a0,开口向上,坐标原点在内部f(0)=c0;a0,开口向下,原点在内部f(0)=c0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部af(0)=ac0,则确定抛物线时,可先定一正一负的a和c,再确定b,故满足题设的抛物线共有CCAA=144条 21.解 (1)从20件产品中任取3件的取法有,其中恰有1件次品的取法为。恰有一件次品的概率P=.(2)法一 从20件产品中任取3件,其中恰有1件次品为事件A1,恰有2件次品为事件A2,3件全是次品为事件A3,则它们的概率P(A1)= =,而事件A1、A2、A3彼此互斥,因此3件中至少有1件次品的概率P(A1+A2+A3)=P(A1)+P(A2)+P(A3)= .法二 记从20件产品中任取3件,3件全是正品为事件A,那么任取3件,至少有1件次品为,根据对立事件的概率加法公式P()=22.解: ()设摸出的个球中有个白球、个白球分别为事件,则 为两个互斥事件 即摸出的个球中有个或个白球的概率为 ()设摸出的个球中全是白球为事件,则 至少摸出一个黑球为事件的对立事件 其概率为23解:个人排有种, 人排好后包括两端共有个“间隔”可以插入空位.(1)空位不相邻相当于将个空位安插在上述个“间隔”中,有种插法,故空位不相邻的坐法有种。(2)将相邻的个空位当作一个元素,另一空位当作另一个元素,往个“间隔”里插有种插法,故个空位中只有个相邻的坐法有种。(3) 个空位至少有个相邻的情况有三类:个空位各不相邻有种坐法;个空位个相邻,另有个不相邻有种坐法;个空位分两组,每组都有个相邻,有种坐法.24.解:()解法一:三支弱队在同一组的概率为 故有一组恰有两支弱队的概率为解法二:有一组恰有两支弱队的概率()解法一:A组中至少有两支弱队的概率 解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A组中至少有两支弱队的概率为排列组合题型拓展一、涂色问题1、引例:引例1(2001年全国高中数学联赛第12题)在一个正六边形的6个区域栽种观赏植物,如右图,要求同一块中种同一种植物,相邻的两块种不同的植物现有四种不同的植物可供选择,则有_种栽种方案引例2(2003年全国高考新课程卷理工第15题)某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_种(以数字作答)引例2分析: 首先栽种第1部分,有种栽种方法; 然后问题就转化为用余下3种颜色的花,去栽种周围的5个部分(如 右图所示),此问题和引例1是同一题型,因此我们有必要对这一题型 的解法做一深入探讨。2、剖析为了深入探讨这一题型的解法,(1)让我们首先用m(m3)种不同的颜色(可供选择),去涂4个扇形的情形(要求每一个扇形着一种颜色,相邻扇形着不同颜色),如图所示以1和3(相间)涂色相同与否为分类标准: 1和3涂同一种颜色,有m种涂法;2有m1种涂法,4也有m1种涂法, 共有 种涂法。1和3涂不同种颜色,有种涂法;2有m2种涂法,4也有m2种涂法, 共有 种涂法。综合和,共有+种涂法。()下面来分析引例1(2001年全国高中数学联赛第12题)在一个正六边形的6个区域栽种观赏植物,如右图,要求同一块中种同一种植物,相邻的两块种不同的植物现有四种不同的植物可供选择,则有_种栽种方案以A、C、E(相间)栽种植物情况作为分类标准:A、C、E栽种同一种植物,有4种栽法;B、D、F各有3种栽法, 共有 4333108 种栽法。B、D、F共有322 种栽法(:若A、C栽种同一种植物,则B有3 种栽法,D、F各有2种栽法), A、C、E种3种植物,有栽法;B、D、F各有2种栽法, 共有 222192 种栽法。综合、,共有 108+432+192=732种栽法。()上述(1)、(2)给出了“设一个圆分成P1,P2,Pn,共n(n为偶数)个扇形,用m种不同的颜色对这n个扇形着色(m3,n3),每一个扇形着一种颜色,相邻扇形着不同颜色,共有多少种不同的着色方法”这类问题的一般解题思路:即 以相间扇形区域的涂色情况作为分类标准,再计算其余相间扇形区域的涂色种数。(4) 那么,“设一个圆分成P1,P2,Pn,共n(n为奇数)个扇形,用m种不同的颜色对这n个扇形着色(m3,n3),每一个扇形着一种颜色,相邻扇形着不同颜色,共有多少种不同的着色方法” 这类问题的解题思路又如何呢?分析: 对 扇形P1有m种涂色方法,扇形P2有m1种涂色方法,扇形P3也有m1种涂色方法,扇形Pn也有m1种涂色方法于是,共有种不同的涂色方法。但是,这种涂色方法可能出现P1与Pn着色相同的情形,这是不符合题意的,因此,答案应从中减去这些不符合题意的涂色方法。那么,这些不符合题意的涂色方法,又怎样计算呢?这时,把P1与Pn看作一个扇形,其涂色方法相当于用m种颜色对n1(n1为偶数)个扇形涂色(这种转换思维相当巧妙)。而用m种颜色对偶数个扇形的涂色问题,已在上述的()中给出了解题思路。下面,就让我们把这种解题思路应用于引例2(2003年全国高考新课程卷理工第15题)某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽 种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高压化成箔项目建议书
- 2025年甘肃省民航机场集团校园招聘45人模拟试卷附答案详解(完整版)
- Glutaraldehyde-生命科学试剂-MCE
- 2025年台州温岭市第一人民医院招聘医学卫生类高层次人才9人模拟试卷及答案详解(必刷)
- 2025年湿式静电除尘器合作协议书
- 2025河南九域龙源电力发展集团有限公司等单位高校毕业生招聘180人模拟试卷及答案详解(典优)
- 资产管理行业工艺流程与标准
- 2025国家自然资源部所属单位招聘118人(第三批)模拟试卷及答案详解(新)
- 婚内相处协议书7篇
- 财务预算编制模板全面管理指导
- 2025年宪法知识竞赛试题库(含答案)
- GB 5725-2025坠落防护安全网
- 脑出血康复期患者护理
- 2025中国银行校招笔试真题及答案
- 钢厂安全用电培训课件
- 《脑性耗盐综合症》课件
- 【绥化】2025年黑龙江省绥化市兰西县体彩中心招聘体彩专管员1人笔试历年典型考题及考点剖析附带答案详解
- 2025年AI应用AI Agent架构新范式报告
- 001 比较思想政治教育(第二版) 第一章
- GB/T 2992.1-2011耐火砖形状尺寸第1部分:通用砖
- 中医门诊消毒隔离制度
评论
0/150
提交评论