




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
必修1函数的基本性质练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)。1下面说法正确的选项( )A函数的单调区间可以是函数的定义域B函数的多个单调增区间的并集也是其单调增区间C具有奇偶性的函数的定义域定关于原点对称D关于原点对称的图象一定是奇函数的图象2在区间上为增函数的是( )ABC D3函数是单调函数时,的取值范围( )A B C D 4如果偶函数在具有最大值,那么该函数在有( )A最大值 B最小值 C 没有最大值D 没有最小值5函数,是( )A偶函数B奇函数C不具有奇偶函数D与有关6函数在和都是增函数,若,且那么( )A BC D无法确定7函数在区间是增函数,则的递增区间是( )AB CD8函数在实数集上是增函数,则( )A B CD9定义在R上的偶函数,满足,且在区间上为递增,则( )A BC D10已知在实数集上是减函数,若,则下列正确的是( )AB CD二、填空题:请把答案填在题中横线上(每小题6分,共24分).11函数在R上为奇函数,且,则当, .12函数,单调递减区间为 ,最大值和最小值的情况为 .13定义在R上的函数(已知)可用的=和来表示,且为奇函数, 为偶函数,则= .14构造一个满足下面三个条件的函数实例,函数在上递减;函数具有奇偶性;函数有最小值为; .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15(12分)已知,求函数得单调递减区间.16(12分)判断下列函数的奇偶性; ; 。17(12分)已知,求.18(12分)函数在区间上都有意义,且在此区间上为增函数,;为减函数,.判断在的单调性,并给出证明.19(14分)在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。生产台的收入函数为(单位元),其成本函数为(单位元),利润的等于收入与成本之差.求出利润函数及其边际利润函数;求出的利润函数及其边际利润函数是否具有相同的最大值;你认为本题中边际利润函数最大值的实际意义.20(14分)已知函数,且,试问,是否存在实数,使得在上为减函数,并且在上为增函数.参考答案一、CBAAB DBAA D二、11; 12和,; 13; 14 ;三、15 解: 函数,故函数的单调递减区间为.16 解定义域关于原点对称,且,奇函数.定义域为不关于原点对称。该函数不具有奇偶性.定义域为R,关于原点对称,且,故其不具有奇偶性.定义域为R,关于原点对称,当时,;当时,;当时,;故该函数为奇函数.17解: 已知中为奇函数,即=中,也即,得,.18解:减函数令 ,则有,即可得;同理有,即可得;从而有 *显然,从而*式,故函数为减函数.19解:.;,故当62或63时,74120(元)。因为为减函数,当时有最大值2440。故不具有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45706-2025眼镜镜片折射率试验方法
- 民航安全技术管理专业教学标准(高等职业教育专科)2025修订
- 2025年中国聚合丁苯橡胶(SSBR)行业市场全景分析及前景机遇研判报告
- 心理咨询案例培训课件
- 中国飞行模拟器行业市场发展现状及前景趋势与投资分析研究报告(2024-2030)
- 全自动凝胶成像系统行业深度研究分析报告(2024-2030版)
- 法治大培训课件
- 2025年中国芜菁种植行业市场运行现状及投资战略研究报告
- 中试总结报告范文
- 2025年 无锡市工会社会工作者招聘考试笔试试题附答案
- 辽宁省点石联考2024-2025学年高二下学期6月份联合考试化学试题(含答案)
- 2025届北京海淀人大附八年级英语第二学期期末质量检测模拟试题含答案
- 2025高考全国一卷语文真题
- T/CAPEB 00001.1-2022制药装备容器和管道第1部分:通用要求
- 医学装备质量管理体系构建与实施
- 青少年新概念1b期末试卷及答案
- 天津2025年中国医学科学院放射医学研究所第一批招聘笔试历年参考题库附带答案详解析
- 焊接质量保证协议书
- 数学思维训练汇编 五年级 学而思培优辅导 小学奥数5年级
- 2025年人教版小学数学二年级下册期末考试卷(附答案解析)
- 检察案卡填录规范课件
评论
0/150
提交评论