第2章习题答案.pdf_第1页
第2章习题答案.pdf_第2页
第2章习题答案.pdf_第3页
第2章习题答案.pdf_第4页
第2章习题答案.pdf_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

经济学系列教材 世纪 第二章 需求 供给和均衡价格 已知某一时期内某商品的需求函数为 供给函数为 求均衡价格 和均衡数量 并作出几何图形 假定供给函数不变 由于消费者收入水平提高 使需求函数变为 求出相应的均衡价格 和均衡数量 并作出几何图形 假定需求函数不变 由于生产技术水平提高 使供给函数变为 求出 相应的均衡价格 和均衡数量 并作出几何图形 利用 和 说明静态分析和比较静态分析的联系和区别 利用 和 说明需求变动和供给变动对均衡价格和均衡数量的 影响 解答 将需求函数 和供给函数 代入均衡条件 有 得 将均衡价格 代入需求函数 得 或者 将均衡价格 代入供给函数 得 所以 均衡价格和均衡数量分别为 如图 所示 将由于消费者收入水平提高而产生的需求函数 和原供给函数 代入均衡条件 有 图 得 将均衡价格 代入 得 或者 将均衡价格 代入 得 所以 均衡价格和均衡数量分别为 如图 所示 图 将原需求函数 和由于技术水平提高而产生的供给函数 代入均衡条件 有 得 将均衡价格 代入 得 或者 将均衡价格 代入 得 所以 均衡价格和均衡数量分别为 如图 所示 图 所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现 的均衡状态及其特征 也可以说 静态分析是在一个经济模型中根据给定的外生变量来求 内生变量的一种分析方法 以 为例 在图 中 均衡点 就是一个体现了静态分 析特征的点 它是在给定的供求力量的相互作用下达到的一个均衡点 在此 给定的供求 力量分别用给定的供给函数 和需求函数 表示 均衡点 具有的特 征是 均衡价格 且当 时 有 同时 均衡数量 且 当 时 有 也可以这样来理解静态分析 在外生变量包括需求函数 中的参数 以及供给函数中的参数 给定的条件下 求出的内生变量 分别为 和 依此类推 以上所描述的关于静态分析的基本要点 在 及图 和 及图 中的每一个单独的均衡点 上都得到了体现 而所谓的比较静态分析是考察当原有的条件发生变化时 原有的均衡状态会发生什么 变化 并分析比较新旧均衡状态 也可以说 比较静态分析是考察在一个经济模型中外生 变量变化时对内生变量的影响 并分析比较由不同数值的外生变量所决定的内生变量的不 同数值 以 为例加以说明 在图 中 由均衡点 变动到均衡点 就是一种比 较静态分析 它表示当需求增加即需求函数发生变化时对均衡点的影响 很清楚 比较 新 旧两个均衡点 和 可以看到 需求增加导致需求曲线右移 最后使得均衡价格由 上升为 同时 均衡数量由 增加为 也可以这样理解比较静态分析 在供给函数 保持不变的前提下 由于需求函数中的外生变量发生变化 即其中一个参数值由 增加 为 从而使得内生变量的数值发生变化 其结果为 均衡价格由原来的 上升为 同 时 均衡数量由原来的 增加为 类似地 利用 及图 也可以说明比较静态分析方法的基本要点 由 和 可见 当消费者收入水平提高导致需求增加 即表现为需求曲线 右移时 均衡价格提高了 均衡数量增加了 由 和 可见 当技术水平提高导致供给增加 即表现为供给曲线右移时 均 衡价格下降了 均衡数量增加了 总之 一般地 需求与均衡价格成同方向变动 与均衡数量成同方向变动 供给与均 衡价格成反方向变动 与均衡数量成同方向变动 假定表 即教材中第 页的表 是需求函数 在一定价 格范围内的需求表 表 某商品的需求表 价格 元 需求量 求出价格 元和 元之间的需求的价格弧弹性 根据给出的需求函数 求 元时的需求的价格点弹性 根据该需求函数或需求表作出几何图形 利用几何方法求出 元时的需求的 价格点弹性 它与 的结果相同吗 解答 根据中点公式 有 由于当 时 所以 有 根据图 在 点即 时的需求的价格点弹性为 或者 图 显然 在此利用几何方法求出的 时的需求的价格点弹性系数和 中根据定义 公式求出的结果是相同的 都是 假定表 即教材中第 页的表 是供给函数 在一定价格 范围内的供给表 表 某商品的供给表 价格 元 供给量 求出价格 元和 元之间的供给的价格弧弹性 根据给出的供给函数 求 元时的供给的价格点弹性 根据该供给函数或供给表作出几何图形 利用几何方法求出 元时的供给的 价格点弹性 它与 的结果相同吗 解答 根据中点公式 有 由于当 时 所以 根据图 在 点即 时的供给的价格点弹性为 图 显然 在此利用几何方法求出的 时的供给的价格点弹性系数和 中根据定义 公式求出的结果是相同的 都是 图 即教材中第 页的图 中有三条线性的需求曲线 和 图 比较 三点的需求的价格点弹性的大小 比较 三点的需求的价格点弹性的大小 解答 根据求需求的价格点弹性的几何方法 可以很方便地推知 分别处于三条 不同的线性需求曲线上的 三点的需求的价格点弹性是相等的 其理由在于 在这 三点上 都有 根据求需求的价格点弹性的几何方法 同样可以很方便地推知 分别处于三条不 同的线性需求曲线上的 三点的需求的价格点弹性是不相等的 且有 其理由在于 在 点有 在 点有 在 点有 在以上三式中 由于 所以 利用图 即教材中第 页的图 比较需求价格点弹性的大小 图 中 两条线性需求曲线 和 相交于 点 试问 在交点 这两条 直线型的需求的价格点弹性相等吗 图 中 两条曲线型的需求曲线 和 相交于 点 试问 在交点 这 两条曲线型的需求的价格点弹性相等吗 a P O Q D1 D2 UaU a P O Q D1 D2 UaU B G F A 图 解答 因为需求的价格点弹性的定义公式为 此公式的 项是 需求曲线某一点斜率的绝对值的倒数 又因为在图 中 线性需求曲线 的斜率的绝 对值小于线性需求曲线 的斜率的绝对值 即需求曲线 的 值大于需求曲线 的 值 所以 在两条线性需求曲线 和 的交点 在 和 给定的前提下 需求 曲线 的弹性大于需求曲线 的弹性 因为需求的价格点弹性的定义公式为 此公式中的 项是需 求曲线某一点的斜率的绝对值的倒数 而曲线型需求曲线上某一点的斜率可以用过该点 的切线的斜率来表示 在图 中 需求曲线 过 点的切线 的斜率的绝对值小 于需求曲线 过 点的切线 的斜率的绝对值 所以 根据在解答 中的道理可 推知 在交点 在 和 给定的前提下 需求曲线 的弹性大于需求曲线 的弹性 假定某消费者关于某种商品的消费数量 与收入 之间的函数关系为 求 当收入 时的需求的收入点弹性 解答 由已知条件 可得 槡 于是 有 进一步 可得 槡 槡 观察并分析以上计算过程及其结果 可以发现 当收入函数 其中 为 常数 时 则无论收入 为多少 相应的需求的收入点弹性恒等于 假定需求函数为 其中 表示收入 表示商品价格 为 常数 求 需求的价格点弹性和需求的收入点弹性 解答 由已知条件 可得 由此可见 一般地 对于幂指数需求函数 而言 其需求的价格点弹性总 等于幂指数的绝对值 而对于线性需求函数 而言 其需求的收入点弹性 总是等于 假定某商品市场上有 个消费者 其中 个消费者购买该市场 的商品 且 每个消费者的需求的价格弹性均为 另外 个消费者购买该市场 的商品 且每个消费 者的需求的价格弹性均为 求 按 个消费者合计的需求的价格弹性系数是多少 解答 令在该市场上被 个消费者购买的商品总量为 相应的市场价格为 根据题意 该市场 的商品被 个消费者购买 且每个消费者的需求的价格弹性都 是 于是 单个消费者 的需求的价格弹性可以写为 即 且 类似地 再根据题意 该市场 的商品被另外 个消费者购买 且每个消费者的需 求的价格弹性都是 于是 单个消费者 的需求的价格弹性可以写为 即 且 此外 该市场上 个消费者合计的需求的价格弹性可以写为 将式 式 代入上式 得 再将式 式 代入上式 得 所以 按 个消费者合计的需求的价格弹性系数是 假定某消费者的需求的价格弹性 需求的收入弹性 求 在其他条件不变的情况下 商品价格下降 对需求数量的影响 在其他条件不变的情况下 消费者收入提高 对需求数量的影响 解答 由于 于是有 即商品价格下降 使得需求数量增加 由于 于是有 即消费者收入提高 使得需求数量增加 假定在某市场上 两厂商是生产同种有差异的产品的竞争者 该市场对 厂 商的需求曲线为 对 厂商的需求曲线为 两厂商目前的 销售量分别为 求 两厂商的需求的价格弹性 和 各是多少 如果 厂商降价后 使得 厂商的需求量增加为 同时使竞争对手 厂 商的需求量减少为 那么 厂商的需求的交叉价格弹性 是多少 如果 厂商追求销售收入最大化 那么 你认为 厂商的降价是一个正确的行为 选择吗 解答 关于 厂商 由于 且 厂商的需求函数可以写成 于是 厂商的需求的价格弹性为 关于 厂商 由于 且 厂商的需求函数可以写成 于是 厂商的需求的价格弹性为 令 厂商降价前后的价格分别为 和 且 厂商相应的需求量分别为 和 根据题意有 因此 厂商的需求的交叉价格弹性为 由 可知 厂商在 时的需求的价格弹性为 也就是说 对 厂商的需求是富有弹性的 我们知道 对于富有弹性的商品而言 厂商的价格和销售收入 成反方向的变化 所以 厂商将商品价格由 下降为 将会增加其销售 收入 具体地有 降价前 当 且 时 厂商的销售收入为 降价后 当 且 时 厂商的销售收入为 显然 即 厂商降价增加了他的销售收入 所以 对于 厂商的销售收 入最大化的目标而言 他的降价行为是正确的 假定肉肠和面包是完全互补品 人们通常以一根肉肠和一个面包卷为比率做一个 热狗 并且已知一根肉肠的价格等于一个面包卷的价格 求肉肠的需求的价格弹性 求面包卷对肉肠的需求的交叉弹性 如果肉肠的价格是面包卷的价格的两倍 那么 肉肠的需求的价格弹性和面包卷 对肉肠的需求的交叉弹性各是多少 解答 令肉肠的需求为 面包卷的需求为 相应的价格为 且 有 该题目的效用最大化问题可以写为 解上述方程组有 由此可得肉肠的需求的价格弹性为 由于一根肉肠和一个面包卷的价格相等 所以 进一步有 面包卷对肉肠的需求的交叉弹性为 由于一根肉肠和一个面包卷的价格相等 所以 进一步有 如果 则根据上面 的结果 可得肉肠的需求的价格弹性为 面包卷对肉肠的需求的交叉弹性为 假定某商品销售的总收益函数为 求 当 时需求的价格弹性 解答 由已知条件可得 得 由式 式中的边际收益函数 可得反需求函数 将 代入式 解得 并可由式 得需求函数 最后 根据需求的价格点弹性公式有 假定某商品的需求的价格弹性为 现售价格为 求 该商品的价格下降多少 才能使得销售量增加 解答 根据已知条件和需求的价格弹性公式 有 由上式解得 也就是说 当该商品的价格下降 即售价为 时 销售量将会增加 利用图阐述需求的价格弹性的大小与厂商的销售收入之间的关系 并举例加以 说明 解答 厂商的销售收入等于商品的价格乘以销售量 即 若令厂商的销售 量等于需求量 则厂商的销售收入又可以改写为 由此出发 我们便可以分 析在不同的需求的价格弹性的条件下 价格变化对需求量变化的影响 进而探讨相应的销 售收入的变化 下面利用图 进行简要说明 图 在分图 中有一条平坦的需求曲线 它表示该商品的需求是富有弹性的 即 观察该需求曲线上的 两点 显然可见 较小的价格下降比例导致了较大的需求 量的增加比例 于是有 降价前的销售收入 相当于矩形 的面积 而降价后的销售收入 相当于矩形 的面积 且 也就是 说 对于富有弹性的商品而言 价格与销售收入成反方向变动的关系 类似地 在分图 中有一条陡峭的需求曲线 它表示该商品的需求是缺乏弹性的 即 观察该需求曲线上的 两点 显然可见 较大的价格下降比例却导致一个 较小的需求量的增加比例 于是 降价前的销售收入 相当于矩形 的面积 大于降价后的销售收入 相当于矩形 的面积 即 也就是说 对于缺乏弹性的商品而言 价格与销售收入成同方向变动的关系 分图 中的需求曲线上 两点之间的需求的价格弹性 按中点公式计算 由图可见 降价前 后的销售收入没有发生变化 即 它们分别相当于两块面积 相等的矩形面积 即矩形 和 的面积相等 这就是说 对于单位弹性的商 品而言 价格变化对厂商的销售收入无影响 例子从略 利用图 即教材中第 页的图 简要说明微观经济学的理论体系框架 和核心思想 图 产品市场和生产要素市场的循环流动图 解答 要点如下 关于微观经济学的理论体系框架 微观经济学通过对个体经济单位的经济行为的研究 说明现代西方经济社会市场机制 的运行和作用 以及改善这种运行的途径 或者 也可以简单地说 微观经济学是通过对 个体经济单位的研究来说明市场机制的资源配置作用的 市场机制亦可称作价格机制 其 基本的要素是需求 供给和均衡价格 以需求 供给和均衡价格为出发点 微观经济学通过效用论来研究消费者追求效用最 大化的行为 并由此推导出消费者的需求曲线 进而得到市场的需求曲线 生产论 成本 论和市场论主要研究生产者追求利润最大化的行为 并由此推导出生产者的供给曲线 进 而得到市场的供给曲线 运用市场的需求曲线和供给曲线 就可以决定市场的均衡价格 并进一步理解在所有的个体经济单位追求各自经济利益的过程中 一个经济社会如何在市 场价格机制的作用下 实现经济资源的配置 其中 从经济资源配置效果的角度讲 完全 竞争市场最优 垄断市场最差 而垄断竞争市场比较接近完全竞争市场 寡头市场比较接 近垄断市场 至此 微观经济学便完成了对图 中上半部分所涉及的关于产品市场的 内容的研究 为了更完整地研究价格机制对资源配置的作用 市场论又将考察的范围从产 品市场扩展至生产要素市场 生产要素的需求方面的理论 从生产者追求利润最大化的行 为出发 推导生产要素的需求曲线 生产要素的供给方面的理论 从消费者追求效用最大 化的角度出发 推导生产要素的供给曲线 据此 进一步说明生产要素市场均衡价格的决 定及其资源配置的效率问题 这样 微观经济学便完成了对图 中下半部分所涉及的 关于生产要素市场的内容的研究 在以上讨论了单个商品市场和单个生产要素市场的均衡价格决定及其作用之后 一般 均衡理论讨论了一个经济社会中所有的单个市场的均衡价格决定问题 其结论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论