




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字图像处理课程设计人脸检测与识别课程设计1、 简介人脸检测与识别是当前模式识别领域的一个前沿课题,人脸识别技术就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。人脸识别是模式识别研究的一个热点,它在身份鉴别、信用卡识别,护照的核对及监控系统等方面有着广泛的应用。人脸图像由于受光照、表情以及姿态等因素的影响,使得同一个人的脸像矩阵差异也比较大。因此,进行人脸识别时,所选取的特征必须对上述因素具备一定的稳定性和不变性.主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一个列向量,经过PCA变换后,不仅可以有效地降低其维数,同时又能保留所需要的识别信息,这些信息对光照、表情以及姿态具有一定的不敏感性.在获得有效的特征向量后,关键问题是设计具有良好分类能力和鲁棒性的分类器.支持向量机(SVM)模式识别方法,兼顾训练误差和泛化能力,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。本此课程设计基于MATLAB,将检测与识别分开进行。其中检测部分使用实验指导书上的肤色模型算法进行,不进行赘述。识别部分采用PCA算法对检测出的人脸图像进行特征提取,再利用最邻近距离分类法对特征向量进行分类识别,将在后文具体表述。仿真结果验证了本算法是有效的。2、 人脸检测1. 源码img=imread(D:std_test_imagesface3.jpg);figure;imshow(img);R=img(:,:,1);G=img(:,:,2);B=img(:,:,3);faceRgn1=(R95)&(G40)&(B20)&max(img,3)-min(img,3)15&abs(R-G)15&RB;figure;imshow(faceRgn1);r=double(R)./double(sum(img,3);g=double(G)./double(sum(img,3);Y=0.3*R+0.59*G+0.11*B;faceRgn2=(r0.333)&(r0.246)&(gg)&g=0.5-0.5*r;figure;imshow(faceRgn2);Q=faceRgn1.*faceRgn2;P=bwlabel(Q,8);BB=regionprops(P,Boundingbox);BB1=struct2cell(BB);BB2=cell2mat(BB1);figure;imshow(img);s1 s2=size(BB2);mx=0;for k=3:4:s2-1 p=BB2(1,k)*BB2(1,k+1); if pmx&(BB2(1,k)/BB2(1,k+1)energy,1);coeff=coeff(:,1:idx);scores=scores(:,1:idx); % 测试acc_count=0;for i=1:people_count for j=training_count+1:face_count_per_people img=im2double(imread(sprintf(path_mask,i,j); img=imresize(img,10 10); if ndims(img)=3 img=rgb2gray(img); end score=(img(:)-mu)/coeff; ,idx=min(sum(scores-repmat(score,size(scores,1),1).2,2); if ceil(idx/training_count)=i acc_count=acc_count+1; end endendtest_count=(people_count*(face_count_per_people-training_count);acc_ratio=acc_count/test_count;fprintf(测试样本数量:%d,正确识别率:%2.2f%,test_count,acc_ratio*100)3. 仿真结果及说明样本库举例:结果为:测试样本数量:45,正确识别率:100.00%4、 总结 人脸识别是一个多学科领域的挑战性难题,近30年来人脸识别的研究虽然取得了巨大的进步,但与人类的感知能力相距甚远。人脸识别还涉及到很多理论和技术问题,这一技术的不断进步还
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金川集团春季校园招聘280+人笔试参考题库附带答案详解
- 2025年福州市人才发展集团有限公司招聘6人笔试参考题库附带答案详解
- 2025年河南种业集团招聘7人笔试参考题库附带答案详解
- 2025年度中国东航股份信息部校园招聘笔试参考题库附带答案详解
- 2025四川江油招投商业运营管理有限公司招聘6人笔试参考题库附带答案详解
- 危险气体安全培训内容课件
- 地铁信号专业安全培训
- 地铁保安安全培训内容课件
- 地质安全教育培训课件
- 危货司机安全培训简报课件
- 重症胰腺炎护理查房
- 共青团入团团章知识考试题库300题(含答案)
- 老旧护栏加固施工方案
- 2025年青海海东通信工程师考试(通信专业实务终端与业务)高、中级考前题库及答案
- 露天煤业安全生产培训课件
- 2025年全国医学基础知识试题(附答案)
- 食堂安全培训课件
- 【课件】角的概念+课件+2025-2026学年人教版(2024)七年+数学级上册+
- 2025年防雷检测专业技术人员能力认定考试题库及答案
- 《房屋市政工程生产安全重大事故隐患判定标准(2024版)》解读
- 美发裁剪理论知识培训课件
评论
0/150
提交评论