




免费预览已结束,剩余11页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
图木舒克市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设函数y=x3与y=()x的图象的交点为(x0,y0),则x0所在的区间是( )A(0,1)B(1,2)C(2,3)D(3,4)2 下列命题正确的是( )A很小的实数可以构成集合.B集合与集合是同一个集合.C自然数集 中最小的数是.D空集是任何集合的子集.3 已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点4 已知椭圆C: +=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为( )A +=1B +y2=1C +=1D +=15 已知函数,则( )A B C D【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.6 (6a3)的最大值为( )A9BC3D7 过点,的直线的斜率为,则( )A B C D8 已知双曲线的方程为=1,则双曲线的离心率为( )ABC或D或9 函数f(x)=有且只有一个零点时,a的取值范围是( )Aa0B0aCa1Da0或a110设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca11已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前10项和为( )A89B76C77D3512下列正方体或四面体中,、分别是所在棱的中点,这四个点不共面的一个图形是( )二、填空题13平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题: m,使曲线E过坐标原点; 对m,曲线E与x轴有三个交点; 曲线E只关于y轴对称,但不关于x轴对称; 若P、M、N三点不共线,则 PMN周长的最小值为24; 曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN 的面积不大于m。 其中真命题的序号是(填上所有真命题的序号)14如果直线3ax+y1=0与直线(12a)x+ay+1=0平行那么a等于15椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为16【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两个零点,则正实数的值为_17设实数x,y满足,向量=(2xy,m),=(1,1)若,则实数m的最大值为18对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题19解不等式|2x1|x|+1 20(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,点是线段的中点.(1)证明:四点共圆;(2)证明:.21在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程22(本小题满分12分)在多面体中,四边形与均为正方形,平面,平面,且(1)求证:平面平面;(2)求二面角的大小的余弦值 23如图在长方形ABCD中,是CD的中点,M是线段AB上的点,(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置24已知全集U=1,2,3,4,5,6,7,A=2,4,5,B=1,3,5,7(1)求AB;(2)求(UA)B;(3)求U(AB)图木舒克市第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:令f(x)=x3,f(x)=3x2ln=3x2+ln20,f(x)=x3在R上单调递增;又f(1)=1=0,f(0)=01=10,f(x)=x3的零点在(0,1),函数y=x3与y=()x的图象的交点为(x0,y0),x0所在的区间是(0,1)故答案为:A2 【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.3 【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.4 【答案】A【解析】解:AF1B的周长为4,AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,4a=4,a=,离心率为,c=1,b=,椭圆C的方程为+=1故选:A【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题5 【答案】B6 【答案】B【解析】解:令f(a)=(3a)(a+6)=+,而且6a3,由此可得函数f(a)的最大值为,故(6a3)的最大值为=,故选B【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题7 【答案】【解析】考点:1.斜率;2.两点间距离.8 【答案】C【解析】解:双曲线的方程为=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=焦点坐标在y轴时,a2=2m,b2=m,c2=3m,离心率e=故选:C【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点9 【答案】D【解析】解:f(1)=lg1=0,当x0时,函数f(x)没有零点,故2x+a0或2x+a0在(,0上恒成立,即a2x,或a2x在(,0上恒成立,故a1或a0;故选D【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题10【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题11【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2)a2+sin2=2a2=4一般地,当n=2k1(kN*)时,a2k+1=1+cos2a2k1+sin2=a2k1+1,即a2k+1a2k1=1所以数列a2k1是首项为1、公差为1的等差数列,因此a2k1=k当n=2k(kN*)时,a2k+2=(1+cos2)a2k+sin2=2a2k所以数列a2k是首项为2、公比为2的等比数列,因此a2k=2k该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C12【答案】D【解析】考点:平面的基本公理与推论二、填空题13【答案】 解析:平面内两定点M(0,2)和N(0,2),动点P(x,y)满足|=m(m4),=m(0,0)代入,可得m=4,正确;令y=0,可得x2+4=m,对于任意m,曲线E与x轴有三个交点,不正确;曲线E关于x轴对称,但不关于y轴对称,故不正确;若P、M、N三点不共线,|+|2=2,所以PMN周长的最小值为2+4,正确;曲线E上与M、N不共线的任意一点G关于原点对称的点为H,则四边形GMHN的面积为2SMNG=|GM|GN|sinMGNm,四边形GMHN的面积最大为不大于m,正确故答案为:14【答案】 【解析】解:直线3ax+y1=0与直线(12a)x+ay+1=0平行,3aa=1(12a),解得a=1或a=,经检验当a=1时,两直线重合,应舍去故答案为:【点评】本题考查直线的一般式方程和平行关系,属基础题15【答案】20 【解析】解:a=5,由椭圆第一定义可知PQF2的周长=4aPQF2的周长=20,故答案为20【点评】作出草图,结合图形求解事半功倍16【答案】【解析】考查函数,其余条件均不变,则:当x0时,f(x)=x+2x,单调递增,f(1)=1+210,由零点存在定理,可得f(x)在(1,0)有且只有一个零点;则由题意可得x0时,f(x)=axlnx有且只有一个零点,即有有且只有一个实根。令,当xe时,g(x)0,g(x)递减;当0x0,g(x)递增。即有x=e处取得极大值,也为最大值,且为,如图g(x)的图象,当直线y=a(a0)与g(x)的图象只有一个交点时,则.回归原问题,则原问题中.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a)的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围17【答案】6 【解析】解: =(2xy,m),=(1,1)若,2xy+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大由,解得,代入2xy+m=0得m=6即m的最大值为6故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值根据向量平行的坐标公式是解决本题的关键18【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3.集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件三、解答题19【答案】 【解析】解:根据题意,对x分3种情况讨论:当x0时,原不等式可化为2x+1x+1,解得x0,又x0,则x不存在,此时,不等式的解集为当时,原不等式可化为2x+1x+1,解得x0,又,此时其解集为x|当时,原不等式可化为2x1x+1,解得,又由,此时其解集为x|,x| x| =x|0x2;综上,原不等式的解集为x|0x2【点评】本题考查绝对值不等式的解法,涉及分类讨论的数学思想,关键是用分段讨论法去掉绝对值,化为与之等价的不等式来解20【答案】(1)证明见解析;(2)证明见解析.【解析】1111试题解析:解:(1)是切线,是弦,即是等腰三角形又点是线段的中点, 是线段垂直平分线,即又由可知是线段的垂直平分线,与互相垂直且平分,四边形是正方形,则四点共圆. (5分)(2由割线定理得,由(1)知是线段的垂直平分线,从而 (10分)考点:与圆有关的比例线段21【答案】 【解析】解:()由从而C的直角坐标方程为即=0时,=2,所以M(2,0)()M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,(,+)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化22【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想平面,平面平面5分23【答案】 【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0t2),则B(2,0),D(0,1),M(t,0),由=2(t2)1=0,解得t=,线段AB上存在点,使得与垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际标准与区域监管冲突下的人造宝石出口合规性思考
- 四氟苯甲酸衍生物在极端工况下的热稳定性与结构演变关系研究
- 可降解高分子材料在一次性削皮机刀片领域的商业化应用边界
- 反刍动物饲料营养配比与碳减排的协同优化路径研究
- 卷门机智能控制算法在复杂电磁环境下的稳定性优化路径
- 半导体产业碳中和背景下凸型平板式芯片绿色封装材料替代路径
- 区块链技术在古董爵杯溯源认证体系中的法律确权困境
- 动态分类模型在实时决策中的灰犀牛风险与敏捷响应机制
- 功率套筒数字孪生模型在预测性维护中的精度瓶颈
- 2025年度甘肃省定西市专业技术人员继续教育公需科目试卷及答案
- 2025年海关关务测试题及答案
- (正式版)DB3302∕T 1180-2025 《高速公路建设韧性指标体系》
- 2025年8月广东深圳市光明区住房和建设局招聘一般专干5人备考练习题库及答案解析
- 中康科技腾讯健康:2024年消费者健康洞察呼吸系列报告-鼻炎鼻窦炎篇预览版
- 《煤矿安全规程(2025)》防治水新旧条文对照
- 2025年IT技术支持工程师招聘面试问题及答案解析
- GB 16807-2025防火膨胀密封件
- 挤压模具工特殊工艺考核试卷及答案
- 2025-2026学年外研版八年级英语上册教学计划及进度表
- 麻醉医生进修汇报课件
- (2025年标准)灵活用工协议书
评论
0/150
提交评论