初三动点问题经典练习.doc_第1页
初三动点问题经典练习.doc_第2页
初三动点问题经典练习.doc_第3页
初三动点问题经典练习.doc_第4页
初三动点问题经典练习.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

此文档收集于网络,仅供学习与交流,如有侵权请联系网站删除 动点问题练习1.如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B,E,F三点共线时,两点同时停止运动设点E移动的时间为t(秒)(1)求当t为何值时,两点同时停止运动;(2)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(3)求当t为何值时,以E,F,C三点为顶点的三角形是等腰三角形;ABCDEFO(4)求当t为何值时,BEC=BFC1. 解:(1)当B,E,F三点共线时,两点同时停止运动,如图2所示(1分)图2ABCDEF由题意可知:ED=t,BC=8,FD= 2t-4,FC= 2tEDBC,FEDFBC解得t=4当t=4时,两点同时停止运动;(3分)(2)ED=t,CF=2t, S=SBCE+ SBCF=84+2tt=16+ t2即S=16+ t2(0 t 4);(6分)(3)若EF=EC时,则点F只能在CD的延长线上,EF2=,EC2=,=t=4或t=0(舍去);若EC=FC时,EC2=,FC2=4t2,=4t2;若EF=FC时,EF2=,FC2=4t2,=4t2t1=(舍去),t2=当t的值为4,时,以E,F,C三点为顶点的三角形是等腰三角形;(9分)(4)在RtBCF和RtCED中,BCD=CDE=90,RtBCFRtCEDBFC=CED(10分)ADBC,BCE=CED若BEC=BFC,则BEC=BCE即BE=BCBE2=,=64t1=(舍去),t2=当t=时,BEC=BFC(12分)2. 正方形边长为4,、分别是、上的两个动点,当点在上运动时,保持和垂直,(1)证明:;(2)设,梯形的面积为,求与之间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积;DMABCN(3)当点运动到什么位置时,求此时的值2. 解:(1)在正方形中,NDACDBM,在中,(2), ,当时,取最大值,最大值为10(3),要使,必须有,由(1)知,当点运动到的中点时,此时yAOMQPBx3.如图,在RtAOB中,AOB90,OA3cm,OB4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为1cm/秒,设P、Q移动时间为t(0t4)(1)求AB的长,过点P做PMOA于M,求出P点的坐标(用t表示)(2)求OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?(3)当t为何值时,OPQ为直角三角形?(4)若点P运动速度不变,改变Q 的运动速度,使OPQ为正三角形,求Q点运动的速度和此时t的值.4.(1)由题意知:BD=5,BQ=t,QC=4-t,DP=t,BP=5-tPQBC BPQBDC 即 当时,PQBC3分(2)过点P作PMBC,垂足为MBPMBDC 4分=5分当时,S有最大值6分(3)当BP=BQ时, 7分当BQ=PQ时,作QEBD,垂足为E,此时,BE=BQEBDC 即 9分当BP=PQ时,作PFBC,垂足为F, 此时,BF=BPFBDC 即 11分, ,均使PBQ为等腰三角形 12分4.如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为秒(09年济南中考) (1)求的长。(2)当时,求的值ADCBMN(3)试探究:为何值时,为等腰三角形4.解:(1)如图,过、分别作于,于,则四边形是矩形在中,在中,由勾股定理得,(图)ADCBKH(图)ADCBGMN(2)如图,过作交于点,则四边形是平行四边形由题意知,当、运动到秒时,又即解得,(3)分三种情

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论