




免费预览已结束,剩余58页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吸积盘的研究进展 王建成云南天文台 吸积盘理论的发展 球对称吸积Bondi 1952 研究定常态球对称吸积 天体对周围气体的影响 模型给出吸积率 吸积半径 吸积流跨声速等物理量的关系 Parker 1969 等人在Bondi解的基础上研究了球对称星风和吸积的过程 进一步发展了理论 薄吸积盘流体具有角动量 吸积过程需要角动量的转移 Shakura Sunyaev 1973 提出粘性的 模型 发展了薄盘理论 粘滞作用导致角动量沿径向向外转移 粘滞耗散产生的能量以辐射方式转移出去 吸积流形成一个几何薄 光学厚的吸积盘 辐射谱是不同温度黑体谱的叠加 广泛用于解释高能天体的红外 光学 紫外 X射线的辐射谱 离子主导吸积盘 Shapiroetal 1976 吸积流形成双温等离子体 离子1011K 电子108 109K 流体是光学薄的 能产生X和 波段的非热辐射 热不稳定 超爱丁顿吸积盘 Katoetal 1977 流体是光学厚的 大部分辐射被俘获 耗散产生的能量被物质内流拖曳进黑洞 吸积率大 光度小 径流主导吸积盘 ADAF 薄盘模型的局限性低光度的天体 低态的X射线双星 低光度活动星系 SgrA等 不能解释宽波段的辐射谱 ADAF的一维模型 Narayan Yi1994 定常态轴对称吸积流动力学性质由四个高度积分的微分方程描述 吸积流的质量 径向动量 角动量和能量的守恒 参数f是平流能量与粘性产生的能量的比 f 1为平流主导 则f 0为辐射冷却主导 参数 是运动学粘性系数 假设为一个与半径R无关的量 质量守恒方程导致吸积率为常数以开普勒角速度和自由落体速度做自相似假设 密度轮廓为 利用自相似和f与R无关的假设 可得盘的解 ADAF有趣的特征对于高粘性ADAF 0 2 0 3 径向速度与自由落体速度相当 V 0 1Vff 流体以低于开普勒的角速度旋转 离心力只起部分支撑作用 剩下的支撑来自于径向压强梯度 当流体几乎没有旋转 辐射率低 耗散能量转变为热能 流体温度达维里温度 盘被热压力顶起 标高H Cs K R ADAF在几何形状上更像球吸积 ADAF中的流体具有正的Bernoulli参数 正的比能 有可能产生喷流或是某种形式的物质外流 流体的熵随着半径的减小而增加 ADAF是对流不稳定的 二维ADAF模型 Narayan Yi1995 ADAF具有准球吸积性质 使用高度积分方程可能是一种过度的简化 为证明高度积分的有效性 Narayan和Yi 1995 考察了ADAF在球坐标极角方向上的结构 他们考虑了球坐标下的一个轴对称无子午流 的ADAF二维结构 自相似假设 代入流体力学方程 得到四个关于函数的六阶常微分方程组 方程组需要六个边界条件才能求解 在赤道面和旋转轴解没有奇异性 满足对称性要求 利用解常微分方程双边界问题的驰豫方法 求解盘的结构 图展示了三个典型解 的角速度 径向速度 密度和声速平方的角向分布轮廓 对于ADAF盘 在同一半径的球壳层上几乎都是常数 径向速度在旋转轴上为零 在赤道面达到极大值 解 的轮廓显示出薄盘解的特征 密度在赤道面上达到最大 随着纬度的增加密度迅速下降 说明物质主要集中在赤道面上 而角速度接近开普勒值 ADAF的应用辐射以ADAF中的高能电子非热辐射为主 主要有同步辐射 轫致辐射和逆康普顿辐射 辐射谱从射电延展到硬X射线波段 质子 质子碰撞产生的中性介子衰变能产生 辐射 ADAF模型的修正 有物质外流的ADAF Xu Chen1997 经典ADAF没有子午流动 吸积内流的物质不可能改变方向变成外流物质 具有子午流动 的情况下 求解自相似的二维ADAF结构 研究物质外流的影响 自相似假设 密度的自相似幂律指数由3 2换成任意参数n 其他物理量假设不变 穿越整个球面的净吸积率是 若质量守恒 净吸积率为常数 有两种情况 幂律指数净吸积率为零 第一种情况对应经典的ADAF 只有物质吸积 没有物质外流 第二种情况对应修正的ADAF 内流的物质和外流的物质相等 使净吸积率为零 两种情况都是特例 一种是没有物质外流 一种是吸积物质全部逃逸出来 没有物质落入中心天体 模型对进行傅立叶展开 代入流体力学方程组 将一个以一定的边界条件求解微分方程组的问题转变为一个非线性代数方程组的求根问题 经过相应的数值计算 他们发现两个类型的解 吸积外流和抛射外流 左上图是密度等值线和子午面内的速度矢量场 左下图是温度等值线 右图是相应的物理量的角分布图 吸积外流解处处都是正能量 有逃逸到无穷远的潜力 抛射外流解处处都是负能量 外流的物质最终都能返回来 不产生外流 绝热内流外流模型 AdiabaticInflow OutflowSolutions ADIOS Blandford Belegman1999 假设辐射冷却无效假设径向速度远小于旋转速度 只适合小粘滞情况 即 0 01 离子主导的物态方程 引入三个自相似参量p 物质吸积率满足 角动量内流满足 能量外流满足 G是半径r处内层物质对外层物质的力矩 物质外流带走的角动量和能量 径向运动方程 Bernoulli常数 物质的比能量 利用以上方程组 可求解具有外流的盘结构 三个参数决定吸积盘的性质情况 对应无外流无旋转的Bondi球对称吸积 情况 对应无外流但有辐射损失的吸积流 因此只有能量外流而无角动量外流 情况 对应磁主导的风 盘上的物质流动是守恒的 所有的角动量和能量被风所带走 在盘中不存在耗散过程 而且盘是冷和薄的 情况 对应纯气体动力学风 即风只带走它自己在出发点的角动量 而不对吸积盘的其它流体产生力矩作用 情况 对应Bernoulli常数 比能量 为零的临界束缚吸积流 情况 对应的中间解 粗线所围四边形为满足 1 2 G 0 3 lw l 4 Be 0四个限制条件的允许区域 物质外流对辐射冷却无效吸积流的影响 Xue Wang2005 ApJ 623 372 质量守恒 动量守恒和能量守恒方程自相似假设物态和粘性假设 可得到五个关于函数的常微分方程 它们分别对应着质量守恒 三个方向的动量守恒和能量守恒方程 这五个方程组成的常微分方程组是一个八阶的方程组 必须给定八个边界条件才能求解 边界条件赤道面边界条件 物理量在赤道面光滑过渡 并且具有镜像对称的性质 外流边界条件 0作为外流的边界在边界上物质流从内流开始转向外流 它们的径向速度是零 盘的厚度满足条件cs K 2 0 r或cs 2 0模型参量 f 1 1 43 能均分 另外三个参数做为自由参数 n表征物质内流的强弱 越大则物质的内流越强 当n 3 2时只有内流没有外流 对应典型的ADAF 当 1 2时对应对流主导吸积流 1 2 n 3 2 表征粘性大小的参数 0 1 外流边界为 0 520 三个典型解 与BB99模型的对比BB99模型是一维垂直方向高度积分模型 新模型是轴对称的二维模型 对模型做方向的积分也可以给出如BB99模型的质量吸积率 角动量内流率和能量外流率 质量吸积率 内流为正 角动量内流率 内流为正 能量外流率 向外为正 BB99模型的参数p对应于我们的3 2 n 而他们的对应于我们的定义单位质量外流物质所带走的角动量和能量 我们的解是不是ADIOS的一个二维扩展呢 平均比能对于上述三个典型解我们有 随着的n减小 平均比能在减小 这说明物质外流的减小将导致能量在吸积气体中的迅速堆积 使这些气体更加接近非束缚的状态 物质的外流有将吸积盘中过多的能量带走减小能量堆积的作用 这也是ADIOS BB99模型 引入物质外流以解决ADAF中能量的过度堆积问题的基本思想 我们的解与ADIOS有很多相似之处 但是我们的解却不是ADIOS的一个扩展 ADIOS对应低粘性 1 0 01 Vr V 我们的解对应高粘性 0 3 Vr V 我们的解和ADIOS的允许区域不同 热前 ThermalFront 讨论模型中流体的耗散性质定义四个物理量在不同纬度 上的分布情况 压强梯度 粘性耗散率 比动能 流体的焓 子午压强梯度轮廓 实线 粘性耗散率轮廓 虚线 比动能轮廓 点划线 气体比焓轮廓 点线 子午压强梯度的方向在低纬度的地方 大 值 是负 方向 与的方向一致 对子午流做正功 因此 推动物质外流的源动力是气体的压强梯度 它在高纬度 情况相反 对流体做负功 起稳定吸积盘的作用 这个区域在耗散性质上十分类似于Blandford Begeleman2004 BB04 的BB99模型二维扩展解中假设的 热前 ThermalFront 区域 运动能量快速耗散为热能 外流对吸积盘质量 角动量和能量的影响 外流的减小 n增大 质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030全球及中国音乐制作服务行业发展趋势分析与未来投资战略咨询研究报告
- 第十三章内能 单元测试卷(含答案) 2025-2026学年人教版九年级物理全一册
- 中石化中原油田招聘考试真题2024
- 2024年北京信息职业技术学院招聘真题
- 2025年智能制造的能源效率优化方案
- 2025年海洋能源利用技术创新:海水淡化反渗透膜材料高效转化研究
- 2025年海洋能发电技术国际合作与市场拓展研究报告
- 2025广西仙城投资发展集团有限公司第一次招聘人员考前自测高频考点模拟试题及参考答案详解一套
- 2025年4月北京门头沟区龙泉镇城市协管员招聘1人模拟试卷及答案详解(考点梳理)
- 2025广东韶关市南雄市司法局招聘1人模拟试卷及答案详解(典优)
- 成人门急诊急性呼吸道感染诊治与防控专家共识 2
- 《湖南民居特色》课件
- 2025年度火锅店合伙人合作协议书:特色火锅底料配方保密协议
- 脑血管造影术围手术期管理
- 岗位化验员述职报告
- 2023年价格鉴证师考试《价格鉴证案例分析》试题真题及答案二
- 小学阶段多音字总汇
- 生育服务证办理承诺书(河北省)
- 2025年中信保诚人寿保险有限公司招聘笔试参考题库含答案解析
- 两人合伙经营网吧协议
- 【课件】纪念长津湖吾辈当自强!课件 -2024年12.24纪念抗美援朝主题班会
评论
0/150
提交评论