




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘 要:ADF4106是ADI公司生产的高集成度PLL频率合成器,该芯片具有宽频带、低噪声、低功耗及低成本等优点。本文介绍了该芯片的主要功能及其在RF系统中的应用。 关键词:双模锁相频率合成技术;可编程分频器;相位噪声;频率分频率 引言 频率合成器作为一种相位锁定装置,是一种频率稳定度较高的离散间隔型频率信号发生器。它被广泛地应用在通信、雷达、仪器仪表、高速计算机及导航系统中。在移动通信中,要求低功耗、低成本、大容量、高频频率合成芯片,为满足在输出较高频率的同时又能获得较小的输出频率间隔,大多采用双模技术的锁相环频率合成技术。这里较为适用的合成芯片之一就是ADI公司的ADF4000系列,它不仅覆盖了0到3GHz的宽频率范围,而且ADF4106芯片最高工作频率可达6GHz,ADF4107芯片最高工作频率可达7GHz。 ADF4106芯片的简介: ADF4106的主要特性如下: 6.0GHz带宽; 2.7V3.3V电源电压; 离散电荷泵VP在3V系统中可进行大范围调整; 可编程双模分频器,P/P+1值分别为8/9、16/17、32/33、 64/65; 可编程电荷泵流; 模拟和数字锁相; -40 C +85 C工作温度; TSSOP-16、CSP-20封装。 ADF4106主要由一个低噪声数字鉴相器(PDF)、一个精密电荷泵、一个可编程参考分频器、可编程A(6bit)及B(13bit)分频计数器和一个双模分频器(P/P+1)构成。在这里,随模式控制高、低电平的不同,双模分频器采用两个不同的分频模数P+1和P。双模分频器的输出同时驱动两个可编程分频器,他们分别预置在A和B(AB),并进行减计数。在除A和除B分频器未计数到零时,模式控制为高电平,双模分频器输出频率为f0/(P+1)。在输入A(P+1) 个周期之后,除A分频器计数到零,将模式控制变为分频器前面的与门使其停止计数。此时,除B分频器还有B-A个数,双模分频器的模数变为P,输出频率为f0/P。再经过P(B-A) 个周期,除B分频器计数到零,输出低电平,再将两计数器重新置为A和B,同时将模式控制恢复为高电平。通过这一完整的周期,合成器的分频比为:N=(P+1)A+P(B-A)=PB+A,频率分辨率为fr。 另外,R(14bit)参考分频器为PDF提供参考频率fREF,再加上外部的环路滤波(LF)、压控振荡器(VCO)构成一个完整的锁相环(PLL)。压控振荡器输出的信号经N次分频后送入鉴相器中作为一路鉴相信号,参考晶振输出的标准信号经参考分频器R次分频后送到鉴相器中作为另一路鉴相信号。鉴相器的输出反映两路鉴相信号相位误差特性的电流序列脉冲,经电荷泵的作用输入到低通滤波器中,低通滤波器将电流转换成VCO的控制电压,同时对噪声及鉴相输出的纹波等干扰进行抑制,VCO输出与其输入端控制电压相应的工作频率。 ADF4106工作在很宽的频率范围,最高工作频率可达6GHz(ADF4107芯片最高工作频率可达7GHz),具有非常低的噪声特性,并能通过芯片的数字接口对A、B、R及P等寄存器进行预置和改变,从而可方便地获得不同的输出频率。目前,这种频率合成器已被广泛地应用在GSM与CDMA移动通信的基站和手持设备、无线扩频中继设备及无限局域网络中。ADF4106在RF中的应用 ADI公司的ADF4106高集成度PLL频率合成器具有很宽的工作带宽,非常低的相位噪声,且工作温度范围较宽。其内部采用双模技术的锁相环频率合成技术,在高频工作时更能展示其优势,且有使系统功耗低、成本低的优点。在这里我们利用ADF4106宽带及低噪声的优点介绍该芯片在RF中的应用。 因为ADF4106具有很宽的频带,因此在高频系统中,使用该芯片可省却一些倍频器,简化系统结构,并降低其成本。 以前使用ADF4113芯片时,为了达到6GHz的高频本地振荡,需要加倍频器(ADF4113的最高频率只能达到4GHz),而使用ADF4106芯片省却了倍频器及其周围的一些电路,得到更简单、效率更高的本地振荡(LO)。获得从5.4GHz到6.0GHz范围内(频率间隔为1MHz)的RF输出频率,而相位噪声只有-83dBc/Hz。ADF4106低噪声的应用 由于ADF4106具有低相位噪声的优点,使用该芯片可获得低噪声、快速恢复的1.5GHz本地振荡。在低于2.0GHz的本地振荡器里,使用ADF4106和一个宽带分频器可改善振荡器的相位噪声及锁定时间。 一个典型的RF系统在1450MHz到1500MHz的频率范围中可以用200kHz的步进值输出相应的频率,要使用整数N阶分频结构实现它,必须要有200kHz参考频率的鉴相器(fREF等于整数N阶合成器中的步进值),其N值将在7250(1450 MHz)到7500 (1500 MHz)的频率范围内变化。 一般在步进值较大时,系统工作良好,但当需要较小的步进值时,就会产生较大的相位噪声(ADF4106芯片的相位噪声为-88dBc/Hz)。此外,对于这样一个系统,在200kHz的频率上其典型的杂散为-88dBc,在400 kHz上有-90dBc。而且,要实现一个20kHz带宽的锁相环,在10 的相位误差上,其锁定时间需要250 s。利用图4的结构(芯片采用ADF4106)实现的系统可改善上述的一些特性。 最后,采用宽带ADF4106芯片工作时必须考虑其结构。按照上例的要求,该芯片PLL的频率是最后输出频率的好几倍,即输出要求是从1450 MHz 到1500 MHz的频率范围,而芯片倍频范围是5800 MHz到 6000 MHz(输出频率的4倍)。为此,采用方案来实现,其中 fPFD的频率为800 kHz,fVCO的频率是从 5800 MHz 到 6000 MHz,而最后环路输出频率由fVCO除以4得到,即fOUT = (fPFD N)/X 。下面对这一实现方案的一些结果作一些说明。 其一减小了相位噪声。合成器的相位噪声和10 logfPFD有关,对于每一个2fPFD频率而言,其相位噪声将减小3dB。然而VCO的输出被分频,它的相位噪声符合20 logX的规律,因此,对每一个X=2值来说,将得到6dB相位噪声。例如4fPFD频率,fVCO除以4得到fOUT的输出。这样,一方面,在4fPFD的频率下相位噪声减少6dB;另一方面,因为fVCO除以4而得到12dB的相位噪声,总结果得到6dB的相位噪声。因此用图4的方案来实现这一系统时,上例的数据结果表明,系统可得到-94 dBc/Hz的相位噪声。 其二减少了杂散。在整数N阶的PLL中,杂散频率出现在PFD的整数倍频时的VCO输出中。在图4中,对于fVCO,这些杂散将在fPFD、2fPFD和3fPFD等倍频时出现,尽管输出fOUT是fVCO除以X(X=4),其杂散频率仍存在于fPFD的倍频中。但从另一方面看,这些杂散又以20 logX (20 log4 = 12dB)的幅度在减小。因此,采用(X=4),可得到fOUT为1450 MHz 到1500 MHz、频率间隔为200kHz的输出频率。在fPFD为800 kHz整数倍频上存在杂散,最低为-90 dBc,需注意的是,尽管步进值是200kHz,但最低的杂散频率是在800 kHz上。 其三缩短了锁定时间。因为PFD是在较高的频率下工作的,所以相位的比较加快,环路锁定因此也加快。再者,由于PFD的频率高,得到较宽的环路带宽,这也将帮助加快其锁定时间。在这个例子中,对一个80 kHz环路带宽的PLL,在10 的相位误差内,其锁定时间约为70 s 。ADF4106灵敏度及系统噪声的分析 采用0.35 m BiCMOS工艺和RF设计技术,使ADF4106的带宽达到6.0 GHz,工业温度为-40 C+85 C。在-40 C、+25 C 及 +85 C 时,一个TSSOP封装的ADF4106的典型灵敏度波形,从图上可以很清楚地看到,在低于-15dBm信号中,ADF4106的6GHz宽带具有优良的性能。 对于PLL整个系统而言,其总相位噪声也是我们关心的一个问题,它和很多因素有关。衡量PLL整个系统的相位噪声,可用下面的表达式得到, PNTOTAL = PNSYNTH + 20 logN + 10 logfPFD 其中PNTOTAL 为PLL整个系统的相位噪声,PNSYNTH 为PLL合成器自身的相位噪声,20 logN是一个和分频比1/N有关的相位噪声的增量,10 logfPFD是一个和PFD输入频率fPFD有关的相位噪声的增量。图8为ADF4106合成器自身的相位噪声曲线图,这里不包括和N值及fPFD有关的相位噪声。图中ADF4106在1Hz时产生-219 dBc/Hz相位噪声,比ADF4113减少3dB,这是整数N阶合成器系列中相位噪声特性最好的一种。在这里我们可根据给定的fPFD及RF的输出频率求出PLL整个系统的相位噪声PNTOTAL。例如,RF输出频率从1700MHz到1800 MHz,fPFD为 200 kHz,则PNTOTAL= -219 + 20 log (9000) + 10 log (200 103)= (-219 + 79 + 53) dBc/Hz= -87 dBc/Hz ADF4106的相位噪声在30MHz内均服从10 logfPFD的规律,而有些整数N阶合成器在PFD频率达到1MHz以上就迅速下降。在已知的PLL结构中,一旦给定N值,很快就能获得曲线图。例如,在200 kHz的位置对应的相位噪声是-166 dBc/Hz,再加上 20 logN (79 dBc),得到 PLL的相位噪声是-87 dBc/Hz。结束语 ADF4106PLL频率合成器具有很宽的工作频率范围,非常低的噪声特性及低功耗、低成本和大容量的优点,因此,其应用范围很广,在目前市场上具有非常可观的前景。DDS(直接数字频率合成器)具有相位变换连续、频率转换速度快、频率分辨率高、相位噪声低、频率稳定度高、集成度高、易于控制等诸多优点,在现代频率合成技术中占有重要地位,被广泛应用于信号发生器、雷达系统、通信系统等领域。MCU(微控制器)具有很强的数据处理能力和控制能力,片上外围设备丰富,精度高,功耗低,在电子设备上有广泛的应用。本文介绍一种基于ADI公司的双通道DDS芯片AD9958产生高质量调频信号的数字调频信号发生器的设计方法,该结构产生的调频信号覆盖频率范围广,载波频率和频偏数字可调,调频波形频率准确度高,且成本较低、可靠性高。系统结构原理调频(FM)体制用已调信号频率的变化承载信息。调频波的瞬时频率等于载波频率加上一个正比于调制信号的时变频率。调频波的表达式为:其瞬时角频率为:其中0 固定角频率(载频); 为比例常数(调制常数),代表调制器的灵敏度1。DDS输出的信号频率可以由下式给定:其中:为参考时钟, 为信号频率分辨率,为输出信号频率, 为频率控制字, 为相位累加器的位数。可见,可以通过设定相位累加器的位数、频率控制字和系统参考时钟的值,就可以产生任意信号频率的输出2。可以看出,当 时,可得DDS的最低输出频率即此DDS的频率分辨率为:利用DDS实现调频,就是要使信号合成器输出信号的频率随着调制信号的幅度大小线性变化,瞬时频率的变化可以转化为对频率控制字的改变的控制3。假设调制信号经ADC转换为B位数字信号,为满足调制频偏要求,需在MCU内与一可调的调制常数相乘,乘积作为调制信号的频率控制字;再假设载波频率控制字为 ,则调频波的频率控制字为:代入(1)式得调频波信号的瞬时频率序列:考虑到相位累加器的积分器作用,假设波形存储器存储的为余弦波,则DDS输出的调频信号序列为:再将调频信号序列 通过数模转换器和低通滤波器后,得到的模拟信号就是直接数字合成的调频信号。硬件实现由于采用全数字结构,DDS输出信号的频带受器件水平的限制,一般在几百兆以内。在本系统中,为了达到设计指标要求的100 400MHz的调制频段要求,综合考虑DDS芯片的技术水平以及成本问题,我们采用双通道DDS与混频器相结合的方案来提高调频信号的工作频段,这样每个通道的最大输出频率只需达到200MHz。向双通道DDS的两个通道送入相同的调频波频率控制字,则两个通道DDS-1和DDS-2产生完全同步的载波为的调频信号序列,再将调频信号序列分别通过D/A转换器和低通滤波器后混频,去掉直流成分,得到的模拟信号就是载波频率为的调频信号。系统的硬件结构原理如图1所示 。信号发生模块信号发生模块主要由DDS芯片组成,这里选用美国ADI公司的双通道直接数字频率合成器AD9958,最高采样频率可达 500 MSPS。它有两个DDS核,能够提供两个内部同步、独立编程同步输出通道,在系统时钟工作在500 MHz时,输出频率可控制范围可以达到0 200 MHz4,可以满足系统设计的要求。AD9958有4种工作模式,分别为单频模式、调制模式、线性扫描模式和幅度输出控制模式。其中单频模式是芯片服务后默认的工作模式,在此模式下输出是某一单调频率、幅度和初始相位的正弦波5。本系统中AD9958采用的就是单频模式,在这种工作模式下,两个DDS通道共享一个公共地址,频率控制字地址是寄存器(0x04),通过改变频率控制字,可以很方便的改变输出频率,结合通道选择控制字,两个通道可以独立输出互不相关的两路正弦波,控制功能由MCU完成。由于DDS的输出最大频率受奈奎斯特抽样定理的限制,所以有,此时,考虑到器件因素,在实际使用中一般取。本系统中,外部参考时钟采用50M高稳晶振,DDS芯片时钟倍频器设置倍率为10,使系统时钟达到500 MHz。从而使每个通道可保证信号质量的最高输出频率达到200 MHz。控制模块控制模块的功能主要由MCU芯片组成,MCU内部集成丰富的外围设备,具有卓越的处理能力,应用MCU完成外围电路,可以使得整个系统结构简单,使用方便。在本系统中,MCU作为核心控制模块完成调制信号频率控制字的获取和载波频率控制字的接收以及对DDS的控制。调制信号频率控制字:本系统通过MCU芯片集成的ADC完成调制信号频率控制字的获取。根据实际需要,本系统的调制信号为语音信号,频率集中在50 3400 Hz。根据奈奎斯特采样定理,ADC采样频率应不小于6.4 kHz,,考虑到高速密集采样可以减少频偏偏差,因此设定ADC采样频率为100 kHz。语音调制信号经过A/D转换,得到12位数字信号,与调制常数相乘作为调制信号频率控制字。载波频率控制字:MCU通过片上集成的UART接口与外部控制模块进行通信,外部控制模块采用异步通信方式将载波频率控制字等指令发送给MCU。MCU收到的指令信号进行处理,并提取出用户要求的载波频率控制字。调频波频率控制字:MCU将调制信号频率控制字与载波频率控制字相加作为调频波的频率控制字并按照DDS的频率控制字格式进行处理后送入DDS。低通滤波器DDS采用数字化技术,最终合成信号是经D/A转换后得到的,其频谱含有丰富的高次频谱分量,为了得到频谱纯净的信号输出,必须要用低通滤波器将他们滤除,要求滤波器的衰减特性要陡直,延迟时间要短。软件设计整个系统采用模块化程序设计,采用C语言编写,便于移植,可读性强,主要是根据AD9958的频率控制字格式,通过MCU将这些控制字写入AD9958内部的寄存器中,从而产生相应的频率。软件主要实现两个方面的功能:系统初始化和频率控制字写入。系统初始化:包括MCU自身的初始化配置,以及按照AD9958芯片的寄存器配置方式,向AD9958写入系统时钟、工作模式以及通道选择等配置指令。频率控制字写入:为完成一次频率控制字更替,MCU需要按照AD9958的频率字写入格式发送一次通道指令,共40位,高8位为寄存器地址(0x04),低32位为频率控制字。在一个ADC采样周期内,必须将通道指令发送完毕,才能使输出频率按照ADC采样频率不断更新,从而实现数字调频。AD9958的指令写入方式可分为串行装入和并行装入,本系统采用串行方式装入,由MCU直接送给AD9958频率控制字。在每个系统时钟(SCLK)的上升沿由数据输入口SDIO_0移入一位控制字,连续40个SCLK周期即可将40位控制字装入缓冲寄存器中。在更新信号(IO_U
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年下沉市场消费金融趋势分析及发展机遇报告
- 药品管理相关管理制度
- 药品销售制度管理制度
- 药店内部各项管理制度
- 药店收银制度管理制度
- 莆田社保流程管理制度
- 设备事故定损管理制度
- 设备变更作业管理制度
- 设备定期维护管理制度
- 设备材料采购管理制度
- 2025年北京市高考英语试卷真题(含答案解析)
- 2025年高考物理广西卷试题真题及答案详解(精校打印)
- 国家开放大学本科《商务英语4》一平台机考真题及答案(第四套)
- 2024年湖北省中考地理生物试卷(含答案)
- 2024年甘肃省天水市中考生物·地理试题卷(含答案)
- GA 1016-2012枪支(弹药)库室风险等级划分与安全防范要求
- 2022年小学六年级毕业监测科学素养测试题试卷 (含答题卡)
- 行政赔偿与行政补偿课件
- 继电器接触器控制的基本线路.ppt
- 最新国家开放大学电大《国际私法》机考3套真题题库及答案2
- (完整版)《普通心理学-彭聃龄》知识要点
评论
0/150
提交评论