




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章知识结构如下图所示:第六章知识结构第七章知识结构框图如下:(二)开展好课题学习可以如下展开课题学习:(1)背景 了解多边形覆盖平面问题来自实际(2)实验 发现有些多边形能覆盖平面,有些则不能(3)分析 讨论多边形能覆盖平面的基本条件,发现问题与多边形的内角大小有密切关系,运用多边形内角和公式对实验结果进行分析(4)运用 进行简单的镶嵌设计首先引入用地砖铺地,用瓷砖贴墙等问题情境,并把这些实际问题转化为数学问题:用一些不重叠摆放的多边形把平面的一部分完全覆盖然后让学生通过实验探究一些多边形能否镶嵌成平面图案,并记下实验结果:(1)用正三角形、正方形或正六边形可以镶嵌成一个平面图案(图1)用正五边形不能镶嵌成一个平面图案(2)用正三角形与正方形可以镶嵌成一个平面图案用正三角形与正六边形也可以镶嵌成一个平面图案(3)用任意三角形可以镶嵌成一个平面图案, 用任意四边形可以镶嵌成一个平面图案(图2)观察上述实验结果,得出多边形能镶嵌成一个平面图案需要满足的两个条件:(1)拼接在同一个点(例如图2中的点O)的各个角的和恰好等于360(周角);(2)相邻的多边形有公共边(例如图2中的OA两侧的多边形有公共边OA)运用上述结论解释实验结果,例如,三角形的内角和等于180,在图2中,1+2+3=180因此,把6个全等的三角形适当地拼接在同一个点(如图2), 一定能使以这点为顶点的6个角的和恰好等于360,并且使边长相等的两条边贴在一起于是, 用三角形能镶嵌成一个平面图案又如,由多边形内角和公式,可以得到五边形的内角和等于 (52)180=540因此,正五边形的每个内角等于 5405=108,360不是108的整数倍,也就是说用一些108的角拼不成360的角因此,用正五边形不能镶嵌成一个平面图案 最后,让学生进行简单的镶嵌设计,使所学内容得到巩固与运用利用二(三)元一次方程组解决问题的基本过程本章知识安排的前后顺序
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年平板型太阳热水器合作协议书
- 2025年Υ射线立体定向放射项目发展计划
- 2025年电子称量仪表项目建议书
- 2025年社会养老保障服务项目合作计划书
- 2025年橡胶零件、附件项目建议书
- 抛光车间安全培训课程课件
- 抛丸车间安全培训内容课件
- 2025年快速原型成形设备项目发展计划
- 抗生素的应用原则课件
- 岳飞学写字题目及答案
- 小学语文一年级上册《汉语拼音-i-u-ü》教学课件
- 《建筑法律知识》课件
- 雷州村落传统建筑保护与再利用研究
- 2024年中国电信集团招聘笔试参考题库含答案解析
- 印刷服务投标方案(技术方案)
- 医疗器械经营质量管理制度、工作程序文件目录
- 美国RAZ分级读物目录整理
- 2019电力建设施工质量验收规程第6部分:调整试验
- 英语10000个单词频率排序
- (完整版)高标准农田建设施工组织设计
- 物体打击事故预防安全培训课件
评论
0/150
提交评论