实数易错点例析.doc_第1页
实数易错点例析.doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实数易错点例析1、对平方根、算术平方根、立方根的概念与性质理解不透理解不透平方根、算术平方根、立方根的概念与性质,往往出现以下错误:求一个正数的平方根时,漏掉其中一个,而求立方根时,又多写一个;求算术平方根时前面加上“”成了平方根等等。例1 (1)求6的平方根 (2)求的算术平方根错解:(1);(2)的算术平方根是9错解分析:错解(1)中混淆了平方根和算术平方根;错解(2)中=9,的算术平方根其实是9的算术平方根,而9的算术平方根是3。正确解法:(1);(2)的算术平方根是3。例2 求64与27的立方根。错解:64的立方根是4,27没有立方根。错解分析:64的立方根是4,只有一个,认为64的立方根有两个且互为相反数,是与正数的平方根相混淆;27的立方根是3,错误地认为27没有立方根是与负数没有平方根相混淆。正确解法:因为43=64,所以64的立方根是4。因为(3)3=27,所以27的立方根是3。2、忽略平方根成立的条件只有非负数才能开平方,这一条件解题时往往被我们忽略。例3 当m取何值时,有意义?错解:不论m取何值时,都无意义。错解分析:考虑不全,漏掉了m=0时的情况。正确解法:当m=0时,m2=0,此时有意义。3、实数分类时只看表面形式对实数进行分类不能只看表面形式,应先化简,再根据结果去判断。例4 下列各数2、3.14159、()2、中无理数有错解:无理数有、()2、。错解分析:这种错误认为带根号的数都是无理数。其实能化简的应先化简,=3,()2=7,=2,所以它们是有理数。正确解法:无理数有、。4、运算错误在进行实数的运算时要注意运算法则与公式的正确应用,千万不要忽略公式的应用条件。例5 化简(1)5 (2)错解:(1)5=5=2; (2)=(3)(5)=15错解分析:(1)中合并同类二次根式时丢掉了从而出错;(2)中忽略了公式的应用条件,即a0,b0,因为负数没有平方根,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论