初高中数学的异同.doc_第1页
初高中数学的异同.doc_第2页
初高中数学的异同.doc_第3页
初高中数学的异同.doc_第4页
初高中数学的异同.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初高中数学的异同:知识结构总结2009-04-24 09:42:02 来源:本站原创 文章作者:智康李老师 进入论坛 一、知识的不一样初中数学知识面少、难度小,高中数学知识广泛,将对初中的数学知识推广和引申,也是对初中数学知识的完善.如:高中数学将把角的概念推广到任意角,可表示包括正、负在内的所有大小角.又如:高中要学习立体几何,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题.如:三个人排成一行,有几种排队方法;四人进行乒乓球双打比赛,有几种比赛场次?高中还将学习统计这些排列的数学方法.在初中数学中,对一个负数开平方无意义,但高中数学却把数的概念进行推广,使数的概念扩大到复数范围等.这些知识同学们在以后的学习中将逐渐学习到.二、学习方法不一样(A)初中课堂教学量小、知识简单,教师通过课堂较慢的讲解速度,争取让同学们全面理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握.而高中课程开设多,每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,如果数学教师能像初中那样监督每个学生的作业和课外练习,就能达到像初中那样把知识让每个学生掌握后再学习新课.(B)模仿与创新的区别.初中学生模仿做题,他们模仿老师思维推理较多,而高中随着知识的难度增加和知识面广泛,学生不能全部模仿.现在高考数学旨在考查学生能力,避免学生高分低能,避免定势思维,提倡创新思维和学生创造能力培养.初中学生大量地模仿给学生带来了不利的思维定势,封闭了学生的丰富、创造精神.如学生在解决:比较a与2a的大小时要不就错、要不就答不全面.大多数学生不会分类讨论.三、学生自学能力的差异初中学生自学能力低,大凡考试中所用的解题方法和数学思想,教师基本上已反复训练,老师把要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题,学生不需自学.但高中的知识面广,要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去这一类型习题的解法.另外,科学在不断地发展,考试在不断地改革,高考也随着全面的改革不断地深入,数学题型的开发在不断地多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展.四、思维习惯上不一样初中学生由于学习数学知识的范围小,知识层次低,知识面窄,对实际问题的思维受到了局限,就几何来说,接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断.代数中数的范围只限定在实数中思维,就不能深刻地解决方程根的类型等.高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密地分析和解决问题.也将培养学生高素质思维,提高学生的思维递进性.五、定量与变量的不同初中数学中,题目、已知和结论用常数给出的较多,一般答案是常数和定量.学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性.如:求解一元二次方程时我们采用对方程ax2+bx+c=0 (a0)的求解,讨论它是否有根和有根时所有根的情形,使学生很快地掌握了对所有一元二次方程的解法.另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题的数学思想.高中一年级学生如何学习数学冠县第三中学侯红华 2011年7月20日 09:25 对于高一学生来讲,环境可以说是全新的,新教材、新同学、新教师、新集体学生有一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,必有些学生产生松口气想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就耳闻高中数学很难学,高中数学课一开始也确是些难理解的抽象概念,如映射、集合、异面直线等,使他们从开始就处于怵头无趣的被动局面。以上这些因素都严重影响高一新生的学习质量。那么怎样才能学好高中数学呢?努力提高自己的能力,改进学法、培养良好的学习习惯。 一、课前认真预习预习是在课前,独立地阅读教材,自己去获取新知识的一个重要环节。课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。对于数学概念和规律则要抓住其核心,以及与其它数学概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。对已学过的知识,如果忘了,课前预习时可及时补上,这样,上课时就不会感到困难重重了。然后再纵观新课的内容,找出各知识点间的联系,掌握知识的脉络,绘出知识结构简图。同时还要阅读有关典型的例题并尝试解答,把解答书后习题作为阅读效果的检查,并从中总结出解题的一般思路和步骤。有能力的同学还可以适当阅读相关内容的课外书籍二,课堂上专心听讲 课堂专心听讲是学生学习的重要方法。因为在课堂上,老师都会反复讲教学过程中的重点、难点和容易出错的地方,老师还可能会补充书上没有的知识点。当然我们不是消极被动地听,而是主观上积极努力地听。比如我们在听课时可对所学内容提出质疑,下课后再征求老师的意见,以便形成自己的观点。一般来说,老师在讲新课前,一般都用五分钟来复习上一节课所讲的内容,或者把今天要讲的材料引个头,概述讲课的目的,或者预习、概叙要阐述的问题。如果我们能很快地记下教师在最初五分钟里所讲的主要内容,那么,它将是最有价值的笔记的一部分,或许会提高整堂课的听课效率。而一堂课的最后五分钟也是很重要的,因为大部分教师会在这段时间总结本节课所讲的主要内容,这时我们一定要认真听讲,与老师一起复习,对笔记进行补缺补漏。三、及时做作业,定期整理学习笔记在学习过程中,通过对所学知识的回顾、对照预习笔记、听课笔记、作业、达标检测、教科书和参考书等材料加以补充、归纳,使所学的知识达到系统、完整和高度概括的水平。学习笔记要简明、易看、一目了然,符合自己的特点。做到定期按知识本身的体系加以归类,整理出总结性的学习笔记,以求知识系统化。把这些思考的成果及时保存下来,以后再复习时,就能迅速地回到自己曾经达到的高度。在学习时如果轻信自己的记忆力,不做笔记,则往往会在该使用时却想不起来了,很可惜的!四课后学会对类似知识点的归纳、总结我们常说,学习的过程就是把书由薄变厚,再由厚变薄的过程。我们前面所说的正是告诉大家怎样才能把书由薄变厚,但把书由薄变厚并不是我们的目的,太厚了,就会超负荷,承载不起。大千世界,纷繁复杂,但在哲学家看来,无非是物质或精神;而在生物学家看来,无非是动物或植物。可见,只要我们学会发现其共性,找出其本质,便都可化繁为简,化难为易。学习也正如此,我们若学会了对类似知识点的归纳,总结,那么繁杂的物理内容便化成了简单的几个部分,学习起来自然就会轻轻松松、游刃有余。例如:在学习函数,一次函数,二次函数,指数函数,对数函数,幂函数,它们的定义方式都是一样的,而那么多的概念,却几乎都是相通的,只要我们掌握了函数概念的实质,所有的便不都迎刃而解了。复习总结提高对学过的知识,做过的练习,如果不及时复习,不会归纳总结,就容易出现知识之间的割裂而形成孤立地、呆板地学习数学知识的倾向。五,学会调整自己的情绪,注重感情投资我们都知道“感情的力量是神奇的”,它在学习中的作用犹如化学中的催化剂。对一个学生而言,能试着喜欢自己的老师,那将会终生受益非浅。学习的过程本就是艰辛的,甚至在大多数学生看来是个单调、枯燥的过程。如果再有情感的反面效应,那么什么样的方法都将是徒劳无效的,如果我们能在枯燥的学习过程中寓于神奇的感情力量,那么,我们的学习生涯不就其乐无穷了吗?函数(function)表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值的输出值x的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。函数是位于数学领域中的一种对应关系,是从非空数集A到实数集B的对应。 简单地说,甲随着乙变,甲就是乙的函数。 精确地说,设X是一个非空集合,Y是非空数集 ,f是个对应法则,若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素x与之对应 ,就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合y|y=f(x),xX为其值域Rf(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。对应法则、定义域是函数的两要素。 编辑本段注意事项对应法则并不等同于函数,因为运算法则并不依赖于某个定义域,它可以作用于任何一个非空集合,如。1X1=1(“X1”可以通用于任意一个算术式里一样) 编辑本段与函数有关的概念在一个变化过程中,发生变化的量叫变量,有些数值是不随变量而改变的,我们称它们为常量。 自变量,函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。 因变量(函数),随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。 函数值,在y是x的函数中,x确定一个值,Y就随之确定一个值,当x取a时,Y就随之确定为b,b就叫做a的函数值。 由映射定义 设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任何一个元素a,在集合B中都存在唯一的一个元素b与之对应,那么,这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射(Mapping),记作f:AB。其中,b称为a在映射f下的象,记作:b=f(a); a称为b关于映射f的原象。集合A中所有元素的象的集合记作f(A)。 则有:定义在非空数集之间的映射称为函数。(函数的自变量是一种特殊的原象,因变量是特殊的象) 几何含义函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。 函数的集合论(关系)定义如果X到Y的二元关系f:XY,对于每个xX,都有唯一的yY,使得f,则称f为X到Y的函数,记做:f:XY。 当X=X1Xn时,称f为n元函数。 其特点: 前域和定义域重合 单值性:ff y=y 编辑本段定义域、对应域和值域输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。 X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。 函数的单调性设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1x2时,恒有f(x1)f(x2),则称函数f(x)在区间I上是单调增加的;如果对于区间I上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。 函数的奇偶性设f(x)为一个实变量实值函数,则f为奇函数若下列的方程对所有实数x都成立: f(x) = - f( - x) 或f( -x) = - f(x) 几何上,一个奇函数与原点对称,亦即其图在绕原点做180度旋转后不会改变。 奇函数的例子有x、sin(x)、sinh(x)和erf(x)。 设f(x)为一实变量实值函数,则f为偶函数若下列的方程对所有实数x都成立: f(x) = f( - x) 几何上,一个偶函数会对y轴对称,亦即其图在对y轴为镜射后不会改变。 偶函数的例子有|x|、x、x2、cos(x)和cosh(sec)(x)。 偶函数不可能是个双射映射。 函数的周期性 狄利克雷函数设函数f(x)的定义域为D。如果存在一个正数l,使得对于任一xD有(x士l)D,且f(x+l)=f(x)恒成立,则称f(x)为周期函数,l称为f(x)的周期,通常我们说周期函数的周期是指最小正周期。 并非每个周期函数都有最小正周期,例如狄利克雷(Dirichlet)函数。 函数的连续性在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 设f是一个从实数集的子集射到 的函数:。f在中的某个点c处是连续的当且仅当以下的两个条件满足: f在点c上有定义。c是中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。 不用极限的概念,也可以用下面所谓的 方法来定义实值函数的连续性。 仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立: 对于任意的正实数,存在一个正实数 0 使得对于任意定义域中的,只要x满足c - x c + ,就有成立。 函数的凹凸性设函数f(x)在I上连续。如果对于I上的两点x1x2,恒有f(x1+x2)/2)(f(x1)+f(x2)/2,(f(x1+x2)/2)(f(x1)+f(x2)/2)那么称f(x)是区间上的(严格)凹函数。 实函数或虚函数实函数(Real function),指定义域和值域均为实数域的函数。实函数的特性之一是可以在坐标上画出图形。 虚函数是面向对象程序设计中的一个重要的概念。当从父类中继承的时候,虚函数和被继承的函数具有相同的签名。但是在运行过程中,运行系统将根据对象的类型,自动地选择适当的具体实现运行。虚函数是面向对象编程实现多态的基本手段。 编辑本段函数概念的发展历史1.早期函数概念几何观念下的函数十七世纪伽俐略(GGalileo,意,15641642)在两门新科学一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,15961650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。 2.十八世纪函数概念代数观念下的函数基本初等函数及其图像 幂函数、指数函数、对数函数、三角函数、反三角函数称为基本初等函数。 幂函数:y=x(0,为任意实数)定义域:为正整数时为(,+),为负整数时是 (,0)(0,+);=(为整数),当是奇数时为(,+),当是偶数时为(0,+);=p/q,p,q互素,作为的复合函数进行讨论。略图如图2、图3。 指数函数:y=ax(a0 ,a1),定义成为(,+),值域为(0 ,+),a1 时是严格单调增加的函数(即当x2x1时,) ,0对数函数:y=logax(a0),称a为底 ,定义域为(0,+),值域为(,+) 。a1 时是严格单调增加的,0a1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数。如图5。 以10为底的对数称为常用对数,简记为lgx 。在科学技术中普遍使用的是以e为底的对数,即自然对数,记作lnx。 三角函数:见表2。 正弦函数、余弦函数如图6,图7所示。 反三角函数:见表3。双曲正、余弦如图8。 双曲函数:双曲正弦(exe-x),双曲余弦?(ex+e-x),双曲正切(exe-x)/(ex+e-x),双曲余切( ex+e-x)/(exe-x)。 编辑本段按照未知数次数分类常函数 x取定义域内任意数时,都有 y=C (C是常数),则函数y=C称为常函数, 其图像是平行于x轴的直线或直线的一部分。 一次函数I、定义与定义式:自变量x和因变量y有如下关系: y=kx+b(k,b为常数,k0)则称y是x的一次函数。特别地,当b=0时,即y=kx时,y是x的正比例函数。II、一次函数的性质: y的变化值与对应的x的变化值成正比例,比值为k 即y/x=k III、一次函数的图象及性质:1 作法与图形:通过如下3个步骤(1)列表(一般找4-6个点);(2)描点;(3)连线,可以作出一次函数的图象。(用平滑的曲线连接)2性质:在一次函数图象上的任意一点P(x,y),都满足等式:y=kx+b。3 k,b与函数图象所在象限。当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过一、二象限当b0时,直线只通过一、三象限与原点。当k0时,开口方向向上,a0时,抛物线向上开口;当a0),对称轴在y轴左 当a与b异号时(即ab0时,抛物线与x轴有2个交点。 = b2-4ac=0时,抛物线与x轴有1个交点。 _ = b2-4ac0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在x|x-b/2a上是增函数;抛物线的开口向上;函数的值域是x|x4ac-b2/4a相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a0) 二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax2 ;y=a(x-h)2 ; y=a(x-h)2+k ; y=ax2+bx+c 对应顶点坐标 (0,0) ; (h,0) ; (h,k) ; (-b/2a,(4ac-b2)/4a) 对应对称轴 x=0 ; x=h ; x=h ; x=-b/2a 当h0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2 +k的图象 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象 当h0,k0时,开口向上,当a0,当x -b/2a时,y随x的增大而减小,函数是减函数;当x -b/2a时,y随x的增大而增大,函数是增函数若a0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a0)的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论