2020版高考数学一轮复习教案 第6章_第5节_直接证明与间接证明(含答案解析).doc_第1页
2020版高考数学一轮复习教案 第6章_第5节_直接证明与间接证明(含答案解析).doc_第2页
2020版高考数学一轮复习教案 第6章_第5节_直接证明与间接证明(含答案解析).doc_第3页
2020版高考数学一轮复习教案 第6章_第5节_直接证明与间接证明(含答案解析).doc_第4页
2020版高考数学一轮复习教案 第6章_第5节_直接证明与间接证明(含答案解析).doc_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五节直接证明与间接证明考纲传真1.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.2.了解反证法的思考过程和特点1直接证明内容综合法分析法定义利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件思维过程由因导果执果索因框图表示 书写格式因为,所以或由,得要证,只需证,即证2.间接证明反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件()(3)用反证法证明时,推出的矛盾不能与假设矛盾()(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程()答案(1)(2)(3)(4)2要证a2b21a2b20 ,只要证明()A2ab1a2b20Ba2b210C.1a2b20D(a21)(b21)0Da2b21a2b20(a21)(b21)0.3用反证法证明命题:“已知a,b为实数,则方程x2axb0至少有一个实根”时,要做的假设是()A方程x2axb0没有实根B方程x2axb0至多有一个实根C方程x2axb0至多有两个实根D方程x2axb0恰好有两个实根A“方程x2axb0至少有一个实根”的反面是“方程x2axb0没有实根”,故选A.4已知a,b,x均为正数,且ab,则与的大小关系是_0,.5(教材改编)在ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则ABC的形状为_三角形等边由题意2BAC,又ABC,B,又b2ac,由余弦定理得b2a2c22accos Ba2c2ac,a2c22ac0,即(ac)20,ac,AC,ABC,ABC为等边三角形综合法1已知m1,a,b,则以下结论正确的是()AabBabCab Da,b大小不定Ba,b.而0(m1),即ab.2已知函数f(x)(a0,且a1)(1)证明:函数yf(x)的图象关于点对称;(2)求f(2)f(1)f(0)f(1)f(2)f(3)的值证明(1)函数f(x)的定义域为全体实数,任取一点(x,y),它关于点对称的点的坐标为(1x,1y)由已知y,则1y1,f(1x),1yf(1x),即函数yf(x)的图象关于点对称(2)由(1)知1f(x)f(1x),即f(x)f(1x)1.f(2)f(3)1,f(1)f(2)1,f(0)f(1)1.则f(2)f(1)f(0)f(1)f(2)f(3)3.规律方法综合法证题的思路分析法1若a,b(1,),证明.证明要证,只需证()2()2,只需证ab1ab0,即证(a1)(1b)0.因为a1,b1,所以a10,1b0,即(a1)(1b)0成立,所以原不等式成立2已知ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:.证明要证,即证3,也就是1,只需证c(bc)a(ab)(ab)(bc),需证c2a2acb2,又ABC三内角A,B,C成等差数列,故B60,由余弦定理,得,b2c2a22accos 60,即b2c2a2ac,故c2a2acb2成立于是原等式成立规律方法分析法的证题思路(1)分析法的证题思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.反证法考法1证明否定性命题【例1】设an是公比为q的等比数列(1)推导an的前n项和公式;(2)设q1,证明数列an1不是等比数列解(1)设an的前n项和为Sn.则Sna1a1qa1q2a1qn1,qSna1qa1q2a1qn1a1qn,两式相减得(1q)Sna1a1qna1(1qn),当q1时,Sn,当q1时,Sna1a1a1na1,所以Sn(2)证明:假设数列an1是等比数列,则(a11)(a31)(a21)2,即a1a3a1a31a2a21,因为an是等比数列,公比为q,所以a1a3a,a2a1q,a3a1q2,所以a1(1q2)2a1q.即q22q10,(q1)20,q1,这与已知q1矛盾,所以假设不成立,故数列an1不是等比数列考法2证明“至多”“至少”命题【例2】已知a,b,c是互不相等的非零实数,用反证法证明三个方程ax22bxc0,bx22cxa0,cx22axb0中至少有一个方程有两个相异实根证明假设三个方程都没有两个相异实根则14b24ac0,24c24ab0,34a24bc0,上述三个式子相加得:a22abb2b22bcc2c22aca20,即(ab)2(bc)2(ca)20.所以abc这与a,b,c是互不相等的实数相矛盾因此假设不成立,故三个方程ax22bxc0,bx22cxa0,cx22axb0中至少有一个方程有两个相异实根规律方法用反证法证明数学命题需把握的三点(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的. (1)已知xR,ax2,b2x,cx2x1,试证明a,b,c至少有一个不小于1.(2)设a0,b0,且ab.证明:(1)ab2;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论