




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三期中数学试题考试一、填空题(每小题5分,共70分)1已知集合U=1, 2, 3, 4,M=1, 2,N=2, 3,则(MN) = 2的最小正周期为,其中,则= 3若是上周期为5的奇函数,且满足,则 4已知各项均为正数的等比数列,=5,=10,则=_ 5已知向量与的夹角为,则 6数列的前项和是,若数列的各项按如下规则排列:,若存在整数,使,则 .7已知,则= 8.设向量,则的最小值为 9若,则函数的值域是_ 10已知数列对于任意,有,若,则 11.设实数满足,.则的取值范围是_.12已知为参数,函数是偶函数则可取值的集合是 13在中,已知三内角成等差数列,其对边分别为,且等于边上的高.则 14设,函数,若对任意的,都有成立,则实数的取值范围为 .二、解答题(本大题6小题,共90分)15(本小题14分)已知集合. (1)求集合; (2)若,求实数的取值范围16(本小题14)在ABC中,角A,B,C的对边分别为a,b,c,且(1)求的值;(2)求的值17(本小题15分). 在中,内角的对边分别为,已知成等比数列,且()若,求的值;()求的值.18(本小题15分)某工厂有216名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或3个H型装置.现将工人分成两组同时开始加工,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)比较g(x)与h(x)的大小,并写出这216名工人完成总任务的时间f(x)的解析式;(3)应怎样分组,才能使完成总任务用的时间最少?19. (本小题16)已知数列 的前n项和,数列的前n项和.()求数列与的通项公式;()设,证明:当且仅当n3时,.20. (本小题16分)已知二次函数的二次项系数为,且不等式的解集为.(1)若函数在区间内单调递减,求的取值范围;(2)当时,证明方程仅有一个实数根.(3)当x0,1时,试讨论成立的充要条件. 泰兴市2011年秋学期高三期中调研考试数学参考答案一、填空题(每小题5分,共70分)1已知集合U=1, 2, 3, 4,M=1, 2,N=2, 3,则(MN) =2的最小正周期为,其中,则= 10 .3. 若是上周期为5的奇函数,且满足,则.4.已知各项均为正数的等比数列,=5,=10,则= 5已知向量与的夹角为,则 6. 数列的前项和是,若数列的各项按如下规则排列:,若存在整数,使,则.7已知,则= .8设向量,则的最小值为.9若,则函数的值域是.10已知数列对于任意,有,若,则40.11设实数满足,.则的取值范围是.12已知为参数,函数是偶函数则可取值的集合是13在中,已知三内角成等差数列,其对边分别为,且等于边上的高.则.14设,函数,若对任意的,都有成立,则实数的取值范围为.二、解答题(本大题6小题,共90分)15(本小题14分)已知集合. (1)求集合; (2)若,求实数的取值范围解:(1)由,得: 2分解得,或,4分所以 5分(2)当时, 6分因为,所以,解得, 9分 当时, 10分因为,所以,解得, 13分综上所述,实数的取值范围为 .14分16.(本小题14分)在ABC中,角A,B,C的对边分别为a,b,c,且(1)求的值;(2)求的值;解:(1)由余弦定理得 4分 又,故 7分(2)原式=9分11分 14分17(本小题15分)在中,内角的对边分别为,已知成等比数列,且()若,求的值;()求的值解:()由,得2分因为,成等比数列,所以4分由余弦定理,得,则,故7分()由,得 9分由及正弦定理得,12分于是(15分)18(本小题15分)某工厂有216名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或3个H型装置.现将工人分成两组同时开始加工,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)比较g(x)与h(x)的大小,并写出这216名工人完成总任务的时间f(x)的解析式;(3)应怎样分组,才能使完成总任务用的时间最少?解:(1)由题知,需加工G型装置4000个,加工H型装置3000个,所用工人分别为x人,(216x)人.g(x)=,h(x)=,即g(x)=,h(x)=(0x216,xN*). 4分(2)g(x)h(x)=. 6分 0x216,216x0.当0x86时,4325x0,g(x)h(x)0,g(x)h(x);当87x216时,4325x0,g(x)h(x)0,g(x)h(x).f(x)= 8分(3)完成总任务所用时间最少即求f(x)的最小值.当0x86时,f(x)递减,f(x)f(86)=. f(x)min=f(86),此时216x=130. 11分当87x216时,f(x)递增,f(x)f(87)=.f(x)min=f(87),此时216x=129. f(x)min=f(86)=f(87)= .14分加工G型装置,H型装置的人数分别为86、130或87、12915分19. (本小题16分)已知数列 的前n项和,数列的前n项和.()求数列与的通项公式;()设,证明:当且仅当n3时,.解:(1)由于数列 的前n项和,所以.当时, .所以4分因为,所以.6分又当时,所以.所以数列是等比数列,其首项为1,公比为,所以.8分(2)由(1)知,10分所以.由即所以即14分又时成立,即由于恒成立.因此,当且仅当时, .16分20. (本小题16分)已知二次函数的二次项系数为,且不等式的解集为.(1)若函数在区间内单调递减,求的取值范围;(2)当时,证明方程仅有一个实数根.(3)当x0,1时,试讨论成立的充要条件. 解:(1),可设,因而 =,2分在区间内单调递减,在上的函数值非正,由于,对称轴,故只需,4分注意到, ,得或(舍去).故所求的取值范围是. 5分 (2)时,欲证方程仅有一个实数根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 给水管道施工排水方案
- 2025年铁路连接员安全知识考试试题及答案
- 学生宿舍环保材料使用与施工方案
- 消防水系统安装方案
- 麝香类合成香料生产项目人力资源管理方案
- 高职院校教育质量评价体系的构建与实践
- 分布式光伏电站人力资源管理方案
- 结构施工安全与风险评估方案
- 2025年商法试题及答案
- 人美版(常锐伦)美术八上《3. 用装饰色彩来表达》听评课记录4
- 养老院电动车管理制度
- 2026届高考语文复习:辨析并修改病句
- 2025年区域卫生规划与医疗卫生资源优化配置的研究报告
- 南充市“十四五”现代物流产业发展规划
- 义务教育《艺术课程标准》2022年修订版(原版)
- 江苏省无锡市江阴市六校2024-2025学年高一下学期4月期中联考试题 物理 含答案
- 医保人员管理制度
- 电话卡租借合同协议
- 2025年中医经典知识竞赛考试题库及答案
- 2025汽水管道应力计算相关软件使用导则
- 退役军人创业就业园运营方案
评论
0/150
提交评论