数学人教版六年级下册数学广角——“鸽巢问题”.doc_第1页
数学人教版六年级下册数学广角——“鸽巢问题”.doc_第2页
数学人教版六年级下册数学广角——“鸽巢问题”.doc_第3页
数学人教版六年级下册数学广角——“鸽巢问题”.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:数学广角“鸽巢问题”【教学内容】(人教版)数学六年级下册第68、69页例1、例2。【教学目标】1、经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。2、通过操作发展学生的类推能力,形成比较抽象的数学思维。3、通过“鸽巢问题”的灵活应用感受数学的魅力。【教学重点】:经历“抽屉原理”的探究过程,初步了解“鸽巢问题”,会用“抽屉原理”解决简单的实际问题。【教学难点】:通过操作发展学生的类推能力,形成比较抽象的数学思维。【教学准备】:多媒体课件、铅笔、文具盒等。【教学过程】一、创设情境,导入新知老师组织学生做“抢凳子的游戏”。请4位同学上来,摆开3张凳子。老师宣布游戏规则:4位同学围着凳子转圈,老师喊“停”的时候,四个人每个人都必须坐在凳子上。教师背对着游戏的学生,宣布游戏开始,然后叫“停”!师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。老师说得对吗?师:老师为什么说得这么肯定呢?二、自主操作,探究新知1、观察猜测多媒体出示例1:4枝铅笔,3个文具盒。师:4个人坐3张凳子,不管怎么坐,总有一张凳子至少坐两个同学。4枝铅笔放进3个文具盒中呢?【不管怎么放,总有一个文具盒中至少放进2枝铅笔。】师:真的是这样吗?为什么会这样呢?你能给大家解释这一现象吗?2、自主思考(1)独立思考:怎样解释这一现象?(2)小组合作,拿铅笔和文具盒实际摆一摆、放一放,看一共有几种情况?(学生通过例1要求通过“把4枝铅笔放入3个盒子”的实际操作,解决3个问题:1、怎样放?重点是让学生明确如果只是放入每个盒中的枝数的排序不一样,应视为一种分法,并引导其有序思考,为后面枚举法的运用扫清障碍。2、共有几种放法?这里主要是孕伏对“不管怎样放”的理解。3、认识“总有一个”的意义。通过观察盒中铅笔枝数,找出4种放法中铅笔枝数最多的盒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个铅笔盒放的枝数是最多的,分别是2枝,3枝和4枝。)3、交流讨论学生汇报是用什么办法来解释这一现象的。【学情预设:第一种:用实物摆一摆,把所有的摆放结果都罗列出来。学生展示把4枝铅笔放进3个盒子里的几种不同摆放情况,教师根据学生摆的情况,有序板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)第二种:假设法。教师请只摆了一种或没有摆放就能解释的同学说说自己的想法。师:其他学生是否明白他的想法呢?引导学生在交流中明确:可以假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。也就是先平均分,每个文具盒中放1枝,余下1枝,不管放在哪个盒子里,一定会出现总有一个文具盒里至少有2枝铅笔。列式表示:4311 1+124、比较优化。请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?怎样解释这一现象?请学生继续思考:把7枝铅笔放进6个文具盒里呢?把10枝铅笔放进9个文具盒里呢?把100枝铅笔放进99个文具盒里呢?你发现了什么?引导学生发现:只要放的铅笔数比文具盒的数量多1,不论怎么放,总有一个文具盒里至少放进2枝铅笔。5、介绍抽屉原理或鸽笼原理,让学生了解刚才的铅笔枝数相当于苹果数,文具盒相当于抽屉数。6、第68页“做一做”。(1)课件出示5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?(2)学生独立思考,自主探究。(3)交流,说理。三、提供平台,开放探究1.出示例2:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?学生先独立思考,然后再小组探究,师巡视了解各种情况。2、学生汇报。学生汇报时,请小组代表汇报自己小组探究的过程和结果,其他小组要认真倾听,有不同想法的再进行汇报,汇报时可以借助演示来帮助说明。3、变式思考。出示变式题:把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?学生分小组自由探究,师巡视了解情况。4、再次汇报。教师在学生汇报后,相应的进行板书:8本 3个 2本余2本(总有一个抽屉里至少有3本书);10本 3个 3本余1本(总有一个抽屉里至少有4本书)。5、观察发现。师:请同学们看黑板上,2本、3本、4本是怎么得到的呢?学生观察后会发现用除法得到,故教师完成黑板上的除法算式:73=2(本)1(本)83=2(本)1(本)103=3(本)1(本)师:请同学们再次观察这三道除法算式,你还能发现什么?学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。6、介绍原理。(略)7.课件出示:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里,为什么?学生读题后独立思考,再交流说理。四、练习提高1、练习十三第1、2题2、(1)你能证明在任意的37人中,至少有几人的属相相同?为什么?物体:37个人 抽屉:12种属相 3712=31 3+1=4(2)篮子里有苹果、橘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论