7.5三角形内角和定理(2).ppt_第1页
7.5三角形内角和定理(2).ppt_第2页
7.5三角形内角和定理(2).ppt_第3页
7.5三角形内角和定理(2).ppt_第4页
7.5三角形内角和定理(2).ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角形外角定义 三角形的一边与另一边的延长线所组成的角 叫做三角形的外角 特征 1 顶点在三角形的一个顶点上 2 一条边是三角形的一边 3 另一条边是三角形某条边的延长线 实际上三角形的一个外角 就是三角形一个内角的邻补角 自主预习 如图 1是 ABC的一个外角 1与图中的其它角有什么关系 1 4 1800 1 2 1 3 1 2 3 证明 2 3 4 1800 三角形内角和定理 1 4 1800 平角的意义 1 2 3 等量代换 1 2 1 3 和大于部分 能证明你的结论吗 三角形的一个外角等于和它不相邻的两个内角的和 三角形的一个外角大于任何一个和它不相邻的内角 三角形内角和定理的推论 推论1 三角形的一个外角等于和它不相邻的两个内角的和 推论2 三角形的一个外角大于任何一个和它不相邻的内角 在这里 我们通过三角形内角和定理直接推导出两个新定理 像这样 由一个公理或定理直接推出的定理 叫做这个公理或定理的推论 推论可以当作定理使用 推论 三角形内角和定理的推论 推论1 三角形的一个外角等于和它不相邻的两个内角的和 推论2 三角形的一个外角大于任何一个和它不相邻的内角 ABC中 1 2 3 1 2 1 3 这个结论以后可以直接运用 推论 例2已知 如图 在 ABC中 AD平分外角 EAC B C 求证 AD BC 证明 EAC B C 三角形的一个外角等于和它不相邻的两个内角的和 B C 已知 C EAC 等式性质 DAC C 等量代换 a b 内错角相等 两直线平行 AD平分 EAC 已知 DAC EAC 角平分线的定义 例题是运用了定理 内错角相等 两直线平行 得到了证实 还有其它方法吗 想一想 对于例2 你还有其它证明方法吗 例2已知 如图6 13 在 ABC中 AD平分外角 EAC B C 则AD BC 请说明理由 DAC C 已证 BAC B C 1800 三角形内角和定理 BAC B DAC 1800 等量代换 AD BC 同旁内角互补 两直线平行 这里是运用了 同旁内角互补 两直线平行 得到了证实 解 由解法1可得 讲授新课 例3已知如图 P是 ABC内一点 连接PB PC 求证 BPC A A B C P D 证明 延长BP 交AC于D BPC是 PDC的一个外角 外角定义 BPC PDC 三角形的一个外角大于任何一个和它不相邻的内角 PDC是 ABD的一个外角 外角定义 PDC A 三角形的一个外角大于任何一个和它不相邻的内角 BPC A 不等式的性质 讲授新课 这节课你学习了哪些知识 1 外角的概念2 外角的推论3 利用外角解决相关问题 课堂小结 1 已知 如图所示 在 ABC中 外角 DCA 100 A 45 求 B和 ACB的大小 解 DCA是 ABC的一个外角 已知 DCA 100 已知 B 100 45 55 三角形的一个外角等于和它不相邻的两个内角的和 又 DCA BCA 180 平角意义 ACB 80 等式的性质 A 45 已知 随堂练习 2 已知 如图所示 求证 1 BDC A 2 BDC A B C 证明 1 BDC是 DCE的一个外角 外角定义 BDC CED 三角形的一个外角大于和它不相邻的任何一个外角 DEC是 ABE的一个外角 外角定义 DEC A 三角形的一个外角大于和它不相邻的任何一个外角 BDC A 不等式的性质 随堂练习 3 已知 如图 在 ABC中 1是它的一个外角 E为边AC上一点 延长BC到D 连接DE 则 1 2 请说明理由 解 1是 ABC的一个外角 已知 1 3 三角形的一个外角大于和与它不相邻的任何一个内角 3是 CDE的一个外角 外角定义 3 2 三角形的一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论