



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 二次函数确定二次函数的表达式(第1课时)岳壁二中 张俊梅一、教学目标知识与技能:能够根据二次函数的图像和性质建立合适的直角坐标系,确定函数关系式,并会根据条件利用待定系数法求二次函数的表达式.过程与方法:经历确定适当的直角坐标系以及根据点的坐标确定二次函数表达式的思维过程,类比求一次函数的表达式的方法,体会求二次函数表达式的思想方法.情感、态度与价值观:能把实际问题抽象为数学问题,也能把所学知识运用于实践,培养学生积极参与的意识,加深学生在生活中学数学,将数学知识服务于生活的学习理念,养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,培养数学的应用意识. 学习重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.学习难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.2、 教学过程设计第一环节复习引入1.二次函数表达式的一般形式是什么? 2.二次函数表达式的顶点式是什么? 3.若二次函数y=ax+bx+c(a0)与x轴两交点为(,0),( ,0)则其函数表达式可以表示成什么形式?4.我们在用待定系数法确定一次函数y=kx+b(k,b为常数,k0)的关系式时,通常需要 个独立的条件;确定反比例函数(k0)的关系式时,通常只需要 个条件.如果要确定二次函数的关系式y=ax+bx+c (a,b,c为常数,a 0),通常又需要几个条件 ?(学生思考讨论后,回答)第二环节 初步探究引例 如图2-7是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其表达式吗?此题设二次函数的顶点坐标式进行求解较为简便,学生较易接受;如学生通过找(10,0)在抛物线上的对称点(-2,0),用交点式 (a 0)求解或用其他方法求解均可. 解:根据图象是一抛物线且顶点坐标为(4,3),因此设它的关系式为,又图象过点(10,0),解得 ,图象的表达式为. 想一想:确定二次函数的表达式需要几个条件? 例1 已知二次函数y=ax2+c的图象经过点(2,3)和(1,3),求出这个二次函数的表达式. 解:将点(2,3)和(1,3)分别代入二次函数y=ax2+c中,得 解这个方程组,得 所求二次函数表达式为:y=2x25.第三环节 深入探究 例 已知二次函数的图象与y轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式.解法1 解:因为抛物线与y轴交点纵坐标为1,所以设抛物线关系式为,图象经过点(2,5)和(-2,13)解得:a=2,b=-2.这个二次函数关系式为 .解法2 解:设抛物线关系式为 y=ax+bx+c ,由题意可知,图象经过点(0,1),(2,5)和(-2,13),解方程组得:a=2,b=-2,c=1.这个二次函数关系式为 想一想 在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式? 第四环节:反馈练习与知识拓展1.已知二次函数的图象顶点是(-1,1),且经过点(1,-3),求这个二次函数的表达式.2. 已知二次函数y=x+bx+c的图象经过点(1,1)与(2,3)两点.求这个二次函数的表达式.第五环节 课时小结总结本课知识与方法1本节课主要学习了怎样确定二次函数的表达式,在确定二次函数的表达式时可以用待定系数法,即先设出二次函数的解析式,再根据题目条件(根据图象或已知点)列出方程(组),解方程组求出待确定的系数,最后答(把求出的系数代回关系式中写出关系式).在解题时应灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程.因此,用待定系数法确定二次函数表达式的步骤:(设-列-解-答)数形结合方程思想2本节课用到的主要的数学思想方法:数形结合、方程的思想目的:引导学生小结本课的知识及数学方法,使知识系统化3. 学习了在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?(1)用顶点式确定二次函数关系式,当知道顶点(h,k)坐标时,那么再知道图象上的另一点坐标,就可以确定这个二次函数的关系式. (2) 用一般式y=ax+bx+c确定二次函数时,如果系数a,b,c中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式. 第六环节作业布置课本 习题 2.6 第1,2,3题三、教学设计反思1.设计理念本节课的重点是要学生了解用待定系数法求二次函数的表达式需要两个条件的情况,掌握用待定系数法确定二次函数表达式的步骤和方法,并能根据条件灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程.2突出重点、突破难点策略探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纪检监察监督管理办法
- 市政电力接入协议
- 2025年男科疾病诊断与治疗实战模拟答案及解析
- 2025年中级导游等级考试(汉语言文学知识)复习题及答案
- 出纳实务概述课件
- 全省地税系统XXXX年时事政治和业务知识考试复习题及答案
- 粉丝经济变现路径-洞察及研究
- 心脏移植配型技术-洞察及研究
- 2025年车辆购买合同
- 衡水金卷四省(四川云南)高三联考9月联考地理(含答案)
- 消化道出血护理查房课件(完整版)
- 教师职业道德与专业发展知到智慧树章节测试课后答案2024年秋鲁东大学
- 物业总经理转正述职报告
- 2024-2025学年重庆市九龙坡区五年级(上)期末数学试卷(含答案)
- 多尺度有限元分析-深度研究
- 骨科用药课件
- 知识产权管理评审报告
- 医院员工手册培训
- 《发热护理》课件
- 《班级植物角我养护》(课件)-二年级上册劳动浙教版
- 五金O2O模式-洞察分析
评论
0/150
提交评论