2014年中考专题复习 (一).docx_第1页
2014年中考专题复习 (一).docx_第2页
2014年中考专题复习 (一).docx_第3页
2014年中考专题复习 (一).docx_第4页
2014年中考专题复习 (一).docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年中考 专题复习 2014年1月20日 专题一 一次函数知识要点1、一次函数:形如y=kx+b (k0, k, b为常数)的函数。 注意:(1)k0,否则自变量x的最高次项的系数不为1 (2)当b=0时,y=kx,y叫x的正比例函数2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。 3、性质: (1)图象的位置: (2)增减性 k0时,y随x增大而增大 k0时,y随x增大而减小 4求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。 “待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: 利用一次函数的定义 构造方程组。 利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向 。利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 利用题目已知条件直接构造方程 。典型例题1. 直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。 分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例 y=2x,y=2x+3的图象平行。 解:y=kx+b与y=5-4x平行, k=-4, y=kx+b与y=-3(x-6)=-3x+18相交于y轴, b=18, y=-4x+18。 说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0, b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。 2. 直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。 解:点B到x轴的距离为2, 点B的坐标为(0,2), 设直线的解析式为y=kx2, 直线过点A(-4,0), 0=-4k2, 解得:k=, 直线AB的解析式为y=x+2或y=-x-2. 说明:此例看起来很简单,但往往比较容易漏解!千万注意两解! 3. 已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,AOB的面积为6平方单位,求正比例函数和一次函数的解析式。 分析:自画草图如右图解:设正比例函数y=kx, 一次函数y=ax+b, 点B在第三象限,横坐标为-2, 设B(-2,),其中0, =6, AO|=6, =-2, 把点B(-2,-2)代入正比例函数y=kx,得k=1 把点A(-6,0)、B(-2,-2)代入y=ax+b, 得 解得: y=x, y=-x-3即所求。 4. 已知正比例函数y=kx (k0)图象上的一点与原点的距离等于13,过这点向x轴作垂线,这点到垂足间的线段和x轴及该图象围成的图形的面积等于30,求这个正比例函数的解析式。 分析:画草图如下:则OA=13,=30, 则列方程求出点A的坐标即可。 解法1:设图象上一点A(x, y)满足 解得:; 代入y=kx (k0)得k=-, k=-. y=-x或y=-x。 解法2:设图象上一点A(a, ka)满足 由(2)得=-, 代入(1),得(1+)(-)=. 整理,得60+169k+60=0. 解得 k=-或k=-. y=-x或y=-x. 5. 已知:如图一次函数y=x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标。 解:直线y=x-3与x轴交于点A(6,0),与y轴交于点B(0,-3), OA=6,OB=3, OAOB,CDAB, ODC=OAB, cotODC=cotOAB,即 OD=8. 点D的坐标为(0,8), 设过CD的直线解析式为y=kx+8,将C( 4,0)代入 0=4k+8, 解得 k=-2 直线CD:y=-2x+8, 由解得 点E的坐标为(,-) 巩固训练1. 下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、 n是常数且mn0)图象是( )2. 一次函数y=x-1的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3. 已知正比例函数y=kx(k0)的图象过第二、四象限,则( )A. y随x的增大而减小 B. y随x的增大而增大C. 当x0时,y随x的增大而减小D. 不论x如何变化,y不变4. 结合正比例函数y=4x的图象回答:当x1时,y的取值范围是( )A.y=1 B.1y45. 直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,ABC为等腰三角形,则满足条件的点C最多有( )A.4个 B.5个 C.7个 D.8个6. 拖拉机开始工作时,油箱中有油40L,如果每小时耗油5L, 那么工作时,油箱中的余油量Q(L)与工作时间t(h)的函数关系用图象可表示为( ) 7. 如果正比例函数的图象经过点(2, 1) , 那么这个函数解析式是_.8. 若一次函数的图象经过第一、第三、第四象限,则一次函数的解析式为_(填一个即可).9. 在平面直角坐标系中,直线y=kx+b(k、b为常数,k0,b0) 可以看成是将直线y=kx沿y轴向上平行移动b个单位而得的,那么将直线y=kx沿x轴向右平行移动m个单位(m0)得到的直线的方程是_.10. 已知正方形ABCD的边长是1,E为CD边的点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿ABCE运动,到达点E.若点P经过的路程为自变量x,APE的面积为函数y,则当y=时,x的值等于_.11. 骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是( ) A.沙漠 B.体温 C.时间 D.骆驼 12. 下面两个变量是成正比例变化的是 ( )A 正方形的面积和它的边长 B 变量x增加,变量y也随之增加;C 矩形的一组对边的边长固定,它的周长和另一组对边的边长 D 圆的周长与它的半径13. 下列说法中不成立的是 ( ) A在y=3x-1中y+1与x成正比例; B在y=-中y与x成正比例C在y=2(x+1)中y与x+1成正比例; D在y=x+3中y与x成正比例14. 已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1x2,则y1与y2的大小关系是( ) Ay1y2 By1y2 Cy1=y2 D以上都有可能 15. 已知一次函数y=kx+b,y随着x的增大而减小,且kb0) DS=30t(t=4)18. 星期天晚饭后,小红从家里出发去散步,图描述了她散步过程中离家s(米)与散步所用的时间t(分)之间的函数关系依据图象,下面描述符合小红散步情景的是 ( ) S(米) 18 (分) (A) 从家出发,到了一个公共阅报栏,看了一会报后,就回家了.(B)从家出发,一直散步(没有停留),然后回家了.(C)从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一会,然后回家了.(D)从家出发,散了一会步,就找同学去了,18分钟后才开始返回.0S(km)t(分)93040121619. 右图是某汽车行驶的路程S(km)与时间t(分)的函数关系图,观察图中所提供的信息,解答下列问题:汽车在前9分钟内的平均速度是 km/分;汽车在中途停了多长时间? ;当16t30时,S与t的函数关系式 20根据下列条件求函数的解析式 y与x2成正比例,且x=-2时y=12 函数y=(k2-4)x2+(k+1)x是正比例函数,且y随x的增大而减小21. 已知一次函数的图象经过点A(-3,2)、B(1,6) 求此函数的解析式,并画出图象求函数图象与坐标轴所围成的三角形面积22. 已知函数y=(2m+1)x+m -3(1)若这个函数的图象经过原点,求m的值(2)若这个函数的图象不经过第二象限,求m的取值范围.23. 一农民带上若干千克自产的土豆进城出售, 为了方便, 他带了一些零钱备用,按市场价售出一些后, 又降价出售, 售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系, 如图所示, 结合图象回答下列问题:(1)农民自带的零钱是多少?(2)试求降价前与之间的关系式.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完, 这时他手中的钱(含备用零钱)是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论