




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考资源网(),您身边的高考专家题目 第三章数列等比数列高考要求 理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题知识点归纳 1等比数列的概念:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示()2等比中项:如果在与之间插入一个数,使,成等比数列,那么叫做与的等比中项也就是,如果是的等比中项,那么,即3等比数列的判定方法:定义法:对于数列,若,则数列是等比数列 等比中项:对于数列,若,则数列是等比数列4等比数列的通项公式:如果等比数列的首项是,公比是,则等比数列的通项为或着5等比数列的前n项和: 当时,当时,前n项和必须具备形式6等比数列的性质:等比数列任意两项间的关系:如果是等比数列的第项,是等差数列的第项,且,公比为,则有 对于等比数列,若,则也就是:如图所示:若数列是等比数列,是其前n项的和,那么,成等比数列如下图所示:题型讲解 例1等比数列中,各项均为正数,且,求解:设等比数列首项为,公比为q,则另法:, 将两式相加得 又因为数列中,各项均为正数,所以7例2一个等比数列有三项,如果把第二项加上4,那么所得的三项就成为等差数列;如果再把这个等差数列的第三项加上32,那么所得的三项又成为等比数列,求原来的等比数列解:设所求的等比数列为a ,aq ,aq2,则 2(aq+4)=a+aq2 且(aq+4)2=a(aq2+32) 解得a=2 ,q=3 或a=,q=-5故所求的等比数列为2,6,18或,-,例3设首项为正数的等比数列,它的前n项和为80,前2n项和为6560,且前n项中数值最大的项为54,求此数列的首项和公比q解:设等比数列an的前n项和为Sn依题意设:a10,Sn=80 ,S2n=6560 S2n2Sn , q1从而 =80且=6560两式相除得1+qn=82 ,即qn=81a1=q-10 即q1,从而等比数列an为递增数列,故前n项中数值最大的项为第n项a1qn-1=54,从而(q-1)qn-1=qn-qn-1=54 qn-1=81-54=27 q=3 a1=q-1=2故此数列的首为2,公比为3例4已知数列an的前n项和Sn=an+1,求a1+a3+a2n-1 解:当n=1时,a1=s1=a1+1即a1=; 当n2时,an=Sn-Sn-1=an-an-1 即数列an是以为首项,-为公比的等比数列an=(-)n-1 ,a2n-1=(-)2n-2=()n-1a1+a3+a2n-1=例5 在和之间插入n个正数,使这个数依次成等比数列,求所插入的n个数之积;解法1:设插入的n个数为,且公比为q则解法2:设插入的n个数为,说明:第一种解法利用等比数列的基本量,先求公比,后求其它量,这是解等差数列、等比数列的常用方法,其优点是思路简单、实用,缺点是有时计算较繁;第二种解法利用等比数列的性质,与“首末项等距”的两项积相等,这在解题中常用到;例6设数列an前n的项和为 Sn,且其中m为常数, (1)求证:an是等比数列; (2)若数列an的公比满足q=f(m)且为等差数列,并求解:(1)由,得两式相减,得 是等比数列 点评:为了求数列的通项,用取倒数的技巧,得出数列的递推公式,从而将其转化为等差数列的问题例7设数列的前n项和为Sn,若是首项为S1各项均为正数且公比为q的等比数列 ()求数列的通项公式(用S1和q表示); ()试比较的大小,并证明你的结论解:()是各项均为正数的等比数列,当n=1时,a1=S1; 当()当n=1时, 当q=1时,当当综上可知:当n=1时,当若 若点评数列与比较大小的综合是高考命题的一个老话题,我们可以找到较好的高考真题本题求解当中用到与之间的关系式:例8 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入资金800万元,以后每年投入资金比上年减少本年度当地旅游产业收入估计为400万元,由于该项建设对旅游的促进作用,预计今后的旅游业收入每年会比上年增加()设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元写出an、bn的表达式;()至少经过几年旅游业的总收入才能超过总投入?解:()第1年投入800万元,第2年投入800(1-)万元,第n年投入800(1-)n-1万元 所以总投入为an=800+800(1-)+800(1-)n-1=40001-()n第1年的收入400万元,第2的收入400(1+)万元,第n年的收入为400(1+)n-1万元所以总收入bn=400+400(1+)+400(1+)n-1=1600()n-1()要使旅游业的总收入超过总投入,即bn-an0由()得1600()n-1-4001-()n0化简得,5()n+2()n-70设x=()n,则5x2-7x+20 x或x1(舍) 即()n,故n5故至少经过5年旅游业的总收入才能超过总投入说明:本题主要考查建立函数关系式,数列求和,不等式等基础知识,考查综合运用数学知识解决实际问题的能力解数学问题应用题重点在过好三关:(1)事理关:阅读理解,知道命题所表达的内容;(2)文理关:将“问题情景”中的文字语言转化为符号语言,用数学关系式表述事件;(3)数理关:由题意建立相关的数学模型,将实际问题数学化,并解答这一数学模型,得出符合实际意义的解答小结:等比数列的通项公式和前n项和公式涉及五个基本量:a1、q、n、an、Sn,“知三求二”是最基本的运算,用待定系数法建立方程是重要的处理策略学生练习 1数列1,37,314,321,中,398是这个数列的( )(A)第13项 (B)第14项 (C)第15项 (D)不在此数列中2在公比q1的等比数列an中,若am=p,则am+n的值为( )(A)pqn+1 (B)pqn-1 (C)pqn (D)pqm+n-13若数列an是等比数列,公比为q,则下列命题中是真命题的是( )(A)若q1,则an+1an (B)若0q1,则an+1an(C)若q=1,则sn+1=Sn (D)若-1q0,b0,a在a与b之间插入n个正数x1,x2,xn,使a,x1,x2,xn,b成等比数列,则= 24在正数项列an中,a2n+3=an+1,an+5,且a3=2,a11=8,则a7= 25已知首项为,公比为q(q0)的等比数列的第m,n,k项顺次为M,N,K,则(n-k)logM+(k-m)logN+(m-n)logK= 26若数列an为等比数列,其中a3,a9是方程3x2+kx+7=0的两根,且(a3+a9)2=3a5a7+2,则实数k= 27若2,a,b,c,d,18六个数成等比数列,则log9= 282+(2+22)+(2+22+23)+(2+22+23+210)= 29数列an的前n项和Sn满足loga(Sn+a)=n+1(a0,a1),则此数列的通项公式为 30某工厂在某年度之初借款A元,从该年度末开始,每年度偿还一定的金额,恰在n年内还清,年利率为r,则每次偿还的金额为 元31已知等比数列an,公比为-2,它的第n项为48,第2n-3项为192,求此数列的通项公式32数列an是正项等比数列,它的前n项和为80,其中数值最大的项为54,前2n项的和为6560,求它的前100项的和33已知a+b+c,b+c-a,c+a-b,a+b-c成等比数列,且公比为q,求证:(1)q3+ q 2+q=1,(2)q=34已知数列an满足a1=1,a2=-,从第二项起,an是以为公比的等比数列,an的前n项和为Sn,试问:S1,S2,S3,Sn,能否构成等比数列?为什么?35求Sn=(x+)+(x2+)+(xn+)(y)36某企业年初有资金1000万元,如果该企业经过生产经营,每年资金增长率为50%,但每年年底都要扣除消费基金x万元,余下资金投入再生产,为实现经过五年,资金达到2000万元(扣除消费基金后),那么每年扣除的消费资金应是多少万元(精确到万元)37陈老师购买安居工程集资房7m2,单价为1000/ m2,一次性国家财政补贴28800元,学校补贴14400元,余款由个人负担,房地产开发公司对教师实行分期付款,即各期所付的款以及各期所付的款到最后一次付款时所生的利息合计,应等于个人负担的购房余款的现价以及这个余款现价到最后一次付款时所生利息之和,每期为一年,等额付款,签订购房合同后一年付款一次,再过一年又付款一次等等,若付10次,10年后付清如果按年利率的75%每年复利一次计算(即本年利息计入次年的本金生息),那么每年应付款多少元?(参考数据:10759 1921,1075102065,1075112221) 参考答案:题号12345678910答案CCDACABDCA题号11121314151617181920答案DBDACBABDB13若q=1,Sn=na1 若q=-1,Sn=当n为偶数时,Sn=014a4 a5 a6=4, a5=log3a1+log3a2+log3a8+log3a9=log3(a1a2a8a9)=log3a45=4log33=18an+1+2=2(an+1) , an+2是以4为首项,2为公比的等比数列,an+2=42n-1=2n+1 an=2n+1-220a1an=a2an-1=a3an-2=ana1 211 2250,10,2或2,10,50 23 244 250 269 a3+a9=-a3a9=a5a7=- (-)2=3+2 k=927- 28212-24 29an=(a-1)an 3031 解得a1=3 an=a1qn-1=3(-2)n-1 32 S2nSn, q1 /,得qn=81 q1,故前n项中an最大代入,得a1=q-1又由an=a1qn-1=54,得81a1=54q a1=2,q=3 S100=33(1)q3+q2+q=(2)q=由合分比定理,可得q=34当n2时,an=a2qn-2=-()n-2=-()n-1 an= 当n=1时,S1=a1=1当n2时,Sn=a1+a2+an=1-()2-()n-1=1-+()2+()n-1=1-Sn=()n-1 Sn可以构成等比数列35当x1,y1时,Sn=(x+x2+xn)+(+)=当x=1,y1时 Sn=n+当x1,y=1时 Sn=当x=y=1时 Sn=2n36设an表示第n年年底扣除消费基金后的资金a1=1000(1+)-xa2=1000(1+)-x(1+)-x=1000(1+)2-x(1+)-xa3=1000(1+)2-x(1+)-x(1+)-x=1000(1+)3-x(1+)2-x(1+)-x类推所得a5=1000(1+)5-x(1+)4-x(1+)3-x(1+)2-x(1+)-x则1000()5-x()4+()3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老鼠画猫说课教材解读
- 《诗经·卫风·木瓜》课件
- 绿色施工技术交底记录
- 扶贫攻坚工作汇报
- 公司级安全培训大纲课件
- 皮肤病病人的心理护理
- 贸易公司财务年终总结
- 公司电梯安全培训课件
- 肾衰合并心衰患者观察及护理
- 物业巡检工作汇报
- 小学科学新教科版三年级上册全册教案(2025秋新版)
- 2025年综合基础知识题库(含答案)
- 注采压力分布规律研究课件
- 中国文化概论-第6章-中国语言文字分解课件
- 水文学考试复习题和答案
- 法院民事调解协议书
- 2022年人口变动情况抽样调查表
- (完整)脑出血护理查房ppt
- 监控系统项目监理规划
- 最新2022年全市住院医师规范化培训实践技能考核人员及时间安排
- 化工总控工项目6任务28精馏操作专项训练课件
评论
0/150
提交评论