1.2利用二分法求方程的近似解.doc_第1页
1.2利用二分法求方程的近似解.doc_第2页
1.2利用二分法求方程的近似解.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、求下列函数的零点:(1)(2)2、判断方程在区间(0,1)内是否有解?若有,有几解?(利用两个端点的函数值异号得到在(0,1)内至少有一解;解的个数就是函数与图象交点的个数,作出两者图象,知只有一解。)这个实数解大概是多少?你能利用二分法来解决这个问题吗?让学生展示自己的解决策略。(师生共同得出前三次,下面请学生再操作5步,2人一组互相配合,一人按计算器,一人记录过程)借助几何画板来显示这个实数解的范围逐步缩小的过程。记,设方程的实数解为,(0,1) 第一次:(0,0.5) 第二次:(0.25,0.5) 第三次:(0.25,0.375) 第四次:(0.3125,0.375) 第五次:(0.3125,0.34375) 第六次:(0.3125,0.328125) 第七次:(0.3203125,0.328125) 第八次:(0.3203125 ,0.32421875)【讨论】来源:Zxxk.Com若精确到0.1,算几次就可以了?若精确到0.01呢(第5次,两个端点精确到0.1的近似值都为0.3,故0.3; 第8次,两个端点精确到0.01的近似值都为0.32,故0.32;)设计意图:第题,学生容易联想到用上节课函数与方程的知识解决,目的在于分解难点,为第题作铺垫;第题初始区间已给定,目的在于让学生在动手操作中来体验用二分法求方程近似解的具体过程,在讨论中自我感悟运用二分法解题到底何时结束?【总结提炼】在例1、例2的基础上,引导学生归纳二分法求解方程近似解的基本步骤。1、 利用估算或图象的方法,确定初始区间,使得(且)2、 求区间的中点3、 计算(1) 若=0,则为方程的根(2) 若,则方程的根(3) 若,则方程的根4、 重复上述步骤,可得方程的解总位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论