已阅读5页,还剩70页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
菁优网第8章一元一次不等式中考题集(25):8.3 一元一次不等式组 第8章一元一次不等式中考题集(25):8.3 一元一次不等式组解答题391(2009朝阳)某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力现有甲、乙两种客车,它们的载客量和租金如下表设租用甲种客车x辆,租车总费用为y元甲种客车乙种客车载客量(人/辆)4530租金(元/辆)280200(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?392(2008株洲)2008年北京奥运会的比赛门票开始接受公众预定下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男 篮1000足 球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?393(2008岳阳)某学校科技活动小组制作了部分科技产品后,把剩余的甲乙两种原料制作100个A、B两种类型号的工艺品已知每制作一个工艺品所需甲乙两种原料如右表,已知剩余的甲种原料29千克,乙种原料37.2千克,假设制作x个A型工艺品 型号千克/个原料 A型 B型 甲 0.5 0.2 乙 0.3 0.4(1)求出x应满足的不等式组的关系式;(2)请你设计A、B两种型号的工艺品的所有制作方案;(3)经市场了解,A型工艺品售价25元/个,B型工艺品售价15元/个,若这两种型号的销售总额为y元,请写出y与x之间的函数关系式,并指出哪种制作方案,使销售总额最大,求出最大销售总额394(2008永春县)商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买总金额不能超过450元,请你帮公司设计购买方案395(2008扬州)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元学校花去捐款96 000元采购这两种帐篷,正好可供2300人临时居住(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?396(2008襄阳)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套问:该小学有多少个班级?奥运福娃共有多少套?397(2008湘西州)红旺商店同时购进A、B两种商品共用人民币36 000元,全部售完后共获利6 000元,两种商品的进价、售价如下表:A 商品B 商品进价 120元/件 100元/件 售价 138元/件120元/件 (1)求本次红旺商店购进A、B两种商品的件数;(2)第二次进货:A、B件数皆为第一次的2倍,销售时,A商品按原售价销售,B商品打折出售,全部售完后为使利润不少于11 040元,则B商品每件的最低售价应为多少?398(2008湘潭)我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满根据下表提供的信息,解答以下问题:脐 橙 品 种ABC每辆汽车运载量(吨)654每吨脐橙获得(百元)121610(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值399(2008锡林郭勒盟)为迎接市运动会,某单位准备用800元订购10套下表中的运动服 运动服价格(元/套)男装甲100男装乙80女装50(1)若全部资金用来订购男装甲和女装,问他们可以各订多少套?(2)若在现有资金800元允许的范围内和运动服总套数不变的前提下,他们想订购表中的三种运动服,其中男装甲和男装乙的套数相同,且女装费用不超过男装甲的费用,求他们能订购三种运动服各多少套?400(2008潍坊)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的已知种植草皮与种植树木每亩的费用分别为8000元与12000元(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低,最低费用为多少?401(2008铜仁地区)某公园出售的一次性使用门票,每张10元,为吸引更多游客,除保留原来的售票方法外,还推出了一种:购买“个人年票”的售票方法(从购买日起,可供持票者使用一年),年票分A、B、C三类:A类年票每张150元,持票者每次进入公园时无需再购买门票,B类年票每张80元,持票者每次进公园时需再购每次3元的门票,C类年票每张50元,持票者每次进公园时需再购买每次5元的门票(1)如果你只选择一种购买门票的方式,并且你计划在一年中用120元,花在进公园门票上,试通过计算,找出可使进入公园的次数最多的购票方式;(2)求一年中进入该公园时,至少超过多少次,购买A类年票最合算402(2008深圳)“震灾无情人有情”民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元民政局应选择哪种方案可使运输费最少?最少运输费是多少元?403(2008青岛)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案写出解答过程;(2)根据计算判断:哪种购票方案更省钱?404(2008齐齐哈尔)某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用;(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由405(2008连云港)“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这些帐篷用卡车一次性运送到该地震灾区的A,B两地,由于两市通住A,B两地道路的路况不同,卡车的运载量也不同已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如下表:A地B地每千顶帐篷所需车辆数甲市47乙市35所急需帐篷数(单位:千顶)95请设计一种运送方案,使所需的车辆总数最少说明理由,并求出最少车辆总数406(2008昆明)某校决定购买一些跳绳和排球需要的跳绳数量是排球数量的3倍,购买的总费用不低干2200元,但不高于2500元(1)商场内跳绳的售价20元/根,排球的售价为50元/个,设购买跳绳的数量为x,按照学校所定的费用,有几种购买方案?每种方案中跳绳和排球数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)由于购买数量较多,该商规定20元/根跳绳可打九折,50元/个的排球可打八折,用(2)中的最少费用最多还可以多买多少跳绳和排球?407(2008黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200170乙店160150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?408(2008呼和浩特)冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克,乙饮料每瓶需糖6克,柠檬酸10克,现有糖500克,柠檬酸400克(1)请计算有几种配制方案能满足冷饮店的要求;(2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表,请你根据这些统计数据确定一种比较合理的配制方案,并说明理由 两种饮料的日销量 甲 10 1214 16 21 25 3038 40 50 乙 40 38 36 34 29 25 20 12 10 0 天数 3 4 4 4 8 1 1 1 2 2409(2008哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨,租用2辆甲型汽车和1辆乙型汽车共需费用2450元物已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用410(2008福州)今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息: 班级 (1)班(2)班 (3)班 金额(元) 2000信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元请根据以上信息,帮助吴老师解决下列问题:(1)求出(2)班与(3)班的捐款金额各是多少元;(2)求出(1)班的学生人数411(2008佛山)某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨(1)将这些货物一次性运到目的地,有几种租用货车的方案?(2)若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?412(2008鄂州)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元A型B型价格(万元/台)ab处理污水量(吨/月)240180(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案413(2007乌鲁木齐)在“乌鲁木齐靓起来”的活动中,某社区决定利用9000盆菊花和8100盆太阳花搭配A,B两种园艺造型共100个摆放在社区搭配每种园艺造型所需的花卉情况如下表所示: 需要菊花(盆)需要太阳花(盆) 一个A造型 100 60 一个B造型 80 100综合上述信息,设搭配A种园艺造型x个,解答下列问题:(1)请写出满足题意的不等式组,并求出其解集;(2)若搭配一个A种园艺造型的成本为600元,搭配一个B种园艺造型的成本为800元,试确定搭配A种造型多少个时,可使这100个园艺造型的成本最低414(2007乌兰察布)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元,根据市场需求,化妆品店老板决定,购进B品牌化妆品的数量比购进A品牌化妆品数量的2倍还多4套,且B品牌化妆品最多可购进40套,这样化妆品全部售出后,可使总的获利不少于1200元,问有几种进货方案?如何进货?415(2007潍坊)为改善办学条件,北海中学计划购买部分A品牌电脑和B品牌课桌第一次,用9万元购买了A品牌电脑10台和B品牌课桌200张第二次,用9万元购买了A品牌电脑12台和B品牌课桌120张(1)每台A品牌电脑与每张B品牌课桌的价格各是多少元?(2)第三次购买时,销售商对一次购买量大的客户打折销售规定:一次购买A品牌电脑35台以上(含35台),按九折销售,一次购买B品牌课桌600张以上(含600张),按八折销售学校准备用27万元购买电脑和课桌,其中电脑不少于35台,课桌不少于600张,问有几种购买方案?416(2007天水)天水市某蔬菜基地有120吨新鲜蔬菜,计划用A,B两种货运车运往外地销售,已知A种车能装载5吨,B种车能装载6吨(1)若有A,B两种车共22辆,在满载情况下,能将这些蔬菜全部运完,那么A,B两种车各有多少辆?(2)若A种车每辆每趟运费为1500元,B种车每辆每趟运费为1700元,要在车辆满载、且总运费不超过34 500元的情况下,将蔬菜全部运完应怎样选择最佳配车方案?417(2007日照)某水产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%(1)试确定A种类型店面的数量;(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%为使店面的月租费最高,应建造A种类型的店面多少间?418(2007青岛)某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶设生产A种饮料x瓶,解析下列问题:原料名称饮料名称甲乙A20克40克B30克20克(1)有几种符合题意的生产方案写出解析过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?419(2007内江)“六一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元钱,我想买一盒饼干和一袋牛奶如果每盒饼干和每袋牛奶的标价分别设为x元,y元,请你根据以上信息:(1)找出x与y之间的函数关系式;(2)请利用不等关系,求出每盒饼干和每袋牛奶的标价第8章一元一次不等式中考题集(25):8.3 一元一次不等式组参考答案与试题解析解答题391(2009朝阳)某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力现有甲、乙两种客车,它们的载客量和租金如下表设租用甲种客车x辆,租车总费用为y元甲种客车乙种客车载客量(人/辆)4530租金(元/辆)280200(1)求出y(元)与x(辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?考点:一元一次不等式组的应用3353004专题:应用题分析:(1)根据题意可列出y与x的等式关系(2)由题意可列出一元一次不等式方程组由此推出y随x的增大而增大解答:解:(1)y=280x+(6x)200=80x+1200(0x6并且x为正整数)(2)可以有结余,由题意知解不等式组得4x5预支的租车费用可以有结余x取整数x取4或5k=800y随x的增大而增大当x=4时,y的值最小其最小值y=480+1200=1520元最多可结余16501520=130元答:最多可结余130元点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系要会利用题中的不等关系找到x的取值范围,并根据函数的单调性求得y的最小值是解题的关键392(2008株洲)2008年北京奥运会的比赛门票开始接受公众预定下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男 篮1000足 球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?考点:一元一次不等式组的应用3353004专题:应用题分析:(1)男篮门票总价+乒乓球门票总价=12000,列方程即可求解;(2)关系式为:男篮门票总价+乒乓球门票总价+足球门票总价12000;足球门票的费用男篮门票的费用据此列不等式即可求解解答:解:(1)设预定男篮门票x张,则乒乓球门票(15x)张,根据题意得1000x+500(15x)=12000解得x=915x=159=6答:这个球迷可以预订男篮门票和乒乓球门票各9张,6张;(2)设足球门票与乒乓球门票数都预定y张,则男篮门票数为(152y)张,根据题意得解得由y为正整数可得y=5,152y=5答:预订这三种球类门票各5张点评:解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组393(2008岳阳)某学校科技活动小组制作了部分科技产品后,把剩余的甲乙两种原料制作100个A、B两种类型号的工艺品已知每制作一个工艺品所需甲乙两种原料如右表,已知剩余的甲种原料29千克,乙种原料37.2千克,假设制作x个A型工艺品 型号千克/个原料 A型 B型 甲 0.5 0.2 乙 0.3 0.4(1)求出x应满足的不等式组的关系式;(2)请你设计A、B两种型号的工艺品的所有制作方案;(3)经市场了解,A型工艺品售价25元/个,B型工艺品售价15元/个,若这两种型号的销售总额为y元,请写出y与x之间的函数关系式,并指出哪种制作方案,使销售总额最大,求出最大销售总额考点:一元一次不等式组的应用3353004专题:方案型分析:(1)根据“甲种原料29千克”“乙种原料37.2千克”直接列不等式组即可;(2)解(1)中的不等式组,取整数值,可有三种方案;(3)根据题意可得y=25x+(100x)15=1500+10x,然后讨论x为何值时,销售额最大解答:解:(1)根据题意得(2)解得28x30方案1:A型28个,B型72个;方案2:A型29个,B型71个;方案3:A型30个,B型70个(3)方法一:y=25x+(100x)15=1500+10x又28x30,函数y=1500+10x为增函数当x=30时,y单人=1500+1030=1800(元)当用方案3,即A型工艺品生产30个,B型生产70个时,销售总额量大,最大销售总额为1800元方法二:方案1,x=28的总额为y1=2528+1572=700+1080=1780(元)方案2,x=29的总额为y2=2529+1571=700+1080=1790(元)方案3,x=30的总额为y3=2530+1570=700+1080=1800(元)比较y1,y2,y3即采用方案3,A型生产30个,B型生产70个时,销售总额最大,最大销售总额为1800元点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求要会用分类的思想来讨论问题并能用不等式的特殊值来求得方案的问题394(2008永春县)商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买总金额不能超过450元,请你帮公司设计购买方案考点:一元一次不等式组的应用;二元一次方程组的应用3353004专题:方案型分析:(1)分别设一盒“福娃”玩具和一盒徽章的价格分别为x元和y元根据题意:购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元列方程组求解;(2)设购买“福娃”玩具m盒,则购买徽章(20m)盒结合(1)中的数据,列不等式求得m的取值范围,进一步分析得到所有的情况解答:解:(1)设一盒“福娃”玩具和一盒徽章的价格分别为x元和y元依题意得解得(2)设购买“福娃”玩具m盒,则购买徽章(20m)盒125m+10(20m)450mm可取1,2购买方案有二种方案一:购买“福娃”玩具1盒,则购买徽章19盒方案二:购买“福娃”玩具2盒,则购买徽章18盒点评:能够根据题意找到等量关系:购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元列方程,能够根据题意找到不等关系列不等式求得未知数的取值范围395(2008扬州)某校师生积极为汶川地震灾区捐款,在得知灾区急需账篷后,立即到当地的一家账篷厂采购,帐篷有两种规格:可供3人居住的小账篷,价格每顶160元;可供10人居住的大账篷,价格每顶400元学校花去捐款96 000元采购这两种帐篷,正好可供2300人临时居住(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大账篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区有哪几种方案?考点:一元一次不等式组的应用3353004专题:方案型分析:1首先设采购了x顶3人小帐篷,y顶10人大帐篷,列出二元一次方程组2设甲型卡车安排了a辆,则乙型卡车安排了(20a)辆,列出不等式组解答即可解答:解:(1)设采购了x顶3人小帐篷,y顶10人大帐篷由题材意得解得答:采购了100顶3人小帐篷,200顶10人大帐篷(2)设甲型卡车安排了a辆,则乙型卡车安排了(20a)辆,则解得15a17.5a为整数,a=15,16,17则20a=5、4、3答:有3种方案:甲型卡车15辆,乙型卡车5辆甲型卡车16辆,乙型卡车4辆甲型卡车17辆,乙型卡车3辆点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解396(2008襄阳)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套问:该小学有多少个班级?奥运福娃共有多少套?考点:一元一次不等式组的应用3353004专题:应用题分析:不足4套,那么(x1)个班级的福娃数+4总福娃数;(x1)个班级的福娃数总福娃数,根据不等关系列不等式即可求解解答:解:设该小学有x个班,则奥运福娃共有(10x+5)套由题意,得,解之得x6x只能取整数,x=5,此时10x+5=55答:该小学有5个班级,共有奥运福娃55套点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解准确的找到不等关系列不等式是解题的关键397(2008湘西州)红旺商店同时购进A、B两种商品共用人民币36 000元,全部售完后共获利6 000元,两种商品的进价、售价如下表:A 商品B 商品进价 120元/件 100元/件 售价 138元/件120元/件 (1)求本次红旺商店购进A、B两种商品的件数;(2)第二次进货:A、B件数皆为第一次的2倍,销售时,A商品按原售价销售,B商品打折出售,全部售完后为使利润不少于11 040元,则B商品每件的最低售价应为多少?考点:一元一次不等式组的应用;二元一次方程组的应用3353004专题:图表型分析:(1)题中有两个等量关系:购买A种商品进价+购买B种商品进价=36000,出售A种商品利润+出售B种商品利润=6000,由此可以列出二元一次方程组解决问题(2)根据不等关系:出售A种商品利润+出售B种商品利润11040,可以列出一元一次不等式解决问题解答:解:(1)设本次红旺商店购进A种商品的件数为x件,B种商品的件数为y件依题意得(2分)解得答:本次红旺商店购进A种商品200件,B种商品的120件(4分)(2)设B商品每件的售价为x元依题意得(138120)2002+(x100)120211040(6分)解得x116答:B商品每件的最低售价为116元(8分)点评:本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润=售价进价398(2008湘潭)我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满根据下表提供的信息,解答以下问题:脐 橙 品 种ABC每辆汽车运载量(吨)654每吨脐橙获得(百元)121610(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值考点:一元一次不等式组的应用3353004专题:方案型;图表型分析:(1)等量关系为:车辆数之和=20;(2)关系式为:装运每种脐橙的车辆数4;(3)总利润为:装运A种脐橙的车辆数612+装运B种脐橙的车辆数516+装运C种脐橙的车辆数410,然后按x的取值来判定解答:解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20xy),则有:6x+5y+4(20xy)=100整理得:y=2x+20(0x10且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x,2x+20,x由题意得:解得:4x8因为x为整数,所以x的值为4,5,6,7,8,所以安排方案共有5种方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)设利润为W(百元)则:W=6x12+5(2x+20)16+4x10=48x+1600k=480W的值随x的增大而减小要使利润W最大,则x=4,故选方案一W最大=484+1600=1408(百元)=14.08(万元)答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元点评:解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系确定x的范围,得到装在的几种方案是解决本题的关键399(2008锡林郭勒盟)为迎接市运动会,某单位准备用800元订购10套下表中的运动服 运动服价格(元/套)男装甲100男装乙80女装50(1)若全部资金用来订购男装甲和女装,问他们可以各订多少套?(2)若在现有资金800元允许的范围内和运动服总套数不变的前提下,他们想订购表中的三种运动服,其中男装甲和男装乙的套数相同,且女装费用不超过男装甲的费用,求他们能订购三种运动服各多少套?考点:一元一次不等式组的应用;一元一次方程的应用3353004专题:图表型分析:(1)设他们可以订购男装甲x套,则订购女装(10x)套根据表中的单价和总价是8000元列方程求解;(2)设他们订购男装甲、乙各y套,则女装(102y)套根据总费用不超过800元和女装费用不超过男装甲的费用列不等式组求解解答:解:(1)设他们可以订购男装甲x套,则订购女装(10x)套根据题意得100x+50(10x)=800,50x=300,x=6,10x=106=4所以他们可以订购男装甲6套,订购女装4套(2)设他们订购男装甲、乙各y套,则女装(102y)套,根据题意得,得2y3y取整数,y=3102y=4,所以他们能订购男装甲、乙各3套,女装4套点评:此题一定要结合表格中的单价列方程求解特别是第二问,能够根据题意列不等式组进行分析求解400(2008潍坊)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的已知种植草皮与种植树木每亩的费用分别为8000元与12000元(1)种植草皮的最小面积是多少?(2)种植草皮的面积为多少时绿化总费用最低,最低费用为多少?考点:一元一次不等式组的应用3353004专题:应用题分析:(1)关系式为:种植草皮的面积10;种植树木的面积10;种植草皮面积种植树木面积,据此列不等式组求解即可;(2)总费用=种植草皮总费用+种植树木总费用,结合(1)中自变量的取值求解解答:解:(1)设种植草皮的面积为x亩,则种植树木面积为(30x)亩,则解得18x20答:种植草皮的最小面积是18亩(2)设绿化总费用为y元,由题意得y=8000x+12000(30x)=3600004000x,当x=20时,y有最小值280000元点评:解决本题的关键是读懂题意,找到符合题意的不等关系式组及所求量的等量关系准确的解不等式是需要掌握的基本计算能力,要熟练掌握利用自变量的取值范围求最值的方法注意本题的不等关系为:种植草皮的面积10;种植树木的面积10;种植草皮面积种植树木面积401(2008铜仁地区)某公园出售的一次性使用门票,每张10元,为吸引更多游客,除保留原来的售票方法外,还推出了一种:购买“个人年票”的售票方法(从购买日起,可供持票者使用一年),年票分A、B、C三类:A类年票每张150元,持票者每次进入公园时无需再购买门票,B类年票每张80元,持票者每次进公园时需再购每次3元的门票,C类年票每张50元,持票者每次进公园时需再购买每次5元的门票(1)如果你只选择一种购买门票的方式,并且你计划在一年中用120元,花在进公园门票上,试通过计算,找出可使进入公园的次数最多的购票方式;(2)求一年中进入该公园时,至少超过多少次,购买A类年票最合算考点:一元一次不等式组的应用3353004分析:(1)可根据参观的次数=买门票的价钱不同购票方式下对应的门票价格,然后比较哪种次数较多即可(2)由于购买A年票首先要花150元,以后就不用再花钱了,那么可让另外三种购票方式所花的费用分别大于等于150,可得出不等式组,然后根据得到的自变量的取值范围,判断除至少超过多少次,购买A才合算解答:(1)因为计划用120元150元,所以不考虑A类年票如果不购买年票可参观的次数为:12010=12次,如果购买B类年票可参观的次数为(12080)3=次,如果购买C类年票可参观的次数为C(12050)5=14次,即C类年票可使进入园林的次数最多(2)设超过x次时,购买A类年票比较合算由题意得:,解得x所以至少超过23次时,购买A类年票比较合算点评:(1)根据“参观的次数=买门票的价钱不同购票方式下对应的门票价格”分别计算出买B,C两类年票可参观的次数,进行比较即可(2)设超过x次时,购买A类年票比较合算,根据A类年票的价格可列出不等式组,求出不等式组的解集即可解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系402(2008深圳)“震灾无情人有情”民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元民政局应选择哪种方案可使运输费最少?最少运输费是多少元?考点:一元一次不等式组的应用;二元一次方程组的应用3353004专题:方案型分析:(1)有两个等量关系:帐篷件数+食品件数=320,帐篷件数食品件数=80,直接设未知数,列出二元一次方程组,求出解;(2)先由等量关系得到一元一次不等式组,求出解集,再根据实际含义确定方案;(3)分别计算每种方案的运费,然后比较得出结果解答:解:(1)设打包成件的帐篷有x件,则食品件数为(x80)件则x+(x80)=320(或x(320x)=80)(2分)解得x=200,x80=120(3分)答:打包成件的帐篷和食品分别为200件和120件(3分)方法二:设打包成件的帐篷有x件,食品有y件,则(2分)解得(3分)答:打包成件的帐篷和食品分别为200件和120件;(3分)(注:用算术方法做也给满分)(2)设租用甲种货车z辆,则(4分)解得2z4(5分)z=2或3或4,民政局安排甲、乙两种货车时有3种方案设计方案分别为:甲车2辆,乙车6辆;甲车3辆,乙车5辆;甲车4辆,乙车4辆;(6分)(3)3种方案的运费分别为:24000+63600=29600(元);34000+53600=30000(元);44000+43600=30400(元)方案一小于方案二小于方案三,方案运费最少,最少运费是29600元(注:用一次函数的性质说明方案最少也不扣分)点评:关键是弄清题意,找出等量或者不等关系:帐篷件数+食品件数=320,帐篷件数食品件数=80,甲种货车辆数+乙种货车辆数=8,得到乙种货车辆数=8甲种货车辆数,代入下面两个不等关系:甲种货车装运帐篷件数+乙种货车装运帐篷件数200,甲种货车装运食品件数+乙种货车装运食品件数120403(2008青岛)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案写出解答过程;(2)根据计算判断:哪种购票方案更省钱?考点:一元一次不等式组的应用3353004专题:应用题;方案型分析:本题是设计方案,根据题意列出不等式组求出符合条件的方案,然后将方案进行分组讨论,选出较为省钱的方案解答:解:(1)设A种票x张,则B种票(15x)张根据题意得解得5x满足条件的x为5或6共有两种购买方案方案一:A种票5张,B种票10张方案二:A种票6张,B种票9张(2)方案一购票费用:6005+12010=4200(元)方案二购票费用:6006+1209=4680(元)4200元4680元,方案一更省钱点评:本题为方案设计题,考查不等式组在解决实际问题中的应用,培养学生运用数学知识于生活实际的良好思想习惯注意本题的不等关系为:购票费不超过5000元;A种船票的数量不少于B种船票数量的一半404(2008齐齐哈尔)某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鑫相伴终身寿险合同
- 租赁合同是主要合同
- 2025-2030智慧零售行业市场供需分析投资评估规划发展前景研究分析报告
- 看场用工合同
- 餐馆装修合同
- 江西省2025年第一季度特种作业安全技术(一类)考核氧化工艺作业复习题库及答案
- 2025年飞行员执照考试《私用驾驶员(直升机)》自测试题及答案
- 2025年中医适宜技术试卷及答案
- 商业决策智能优化-洞察与解读
- 印尼千岛企业核心介绍
- 消防工程常用设施三维图解
- 《炒股现场培训》课件
- 部编版小学二年级语文上册 【分层作业】识字 2 树之歌(课时练)(附答案)
- 网络设备安装合同模板
- 部编版小学-道德与法制2二年级上册-全册课件(新教材)
- 全国大学生职业规划大赛承办申请
- 心理测验技能3课件带习题
- SLT824-2024 水利工程建设项目文件收集与归档规范
- 2024新苏教版一年级数学册第二单元第1课《认识6~9》课件
- WHO人类精液检验与处理实验手册第五版
- 助理值班员(高级)技能鉴定理论题库(浓缩400题)
评论
0/150
提交评论