数学人教版七年级下册代入法消元.doc_第1页
数学人教版七年级下册代入法消元.doc_第2页
数学人教版七年级下册代入法消元.doc_第3页
数学人教版七年级下册代入法消元.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二元一次方程组的解法同学们好,很高兴能够和大家一起探究数学的奥秘。在讲课开始我们先做一个解字游戏。“聪明”由此可见我们都是聪明的孩子,那么下面就是我们见证聪明的时候。首先:教 师 活 动学生活动设 计 意 图(一) 创设情境,激趣导入篮球比赛分胜负,胜一场的2分,输一场得1分,某对的40分,求该对胜负场数。直接设两个未知数(设胜x场,负y场),可以列方程组表示本章引言中问题的数量关系。如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程_1来解。分析:12x(22x)=40。观察上面的二元一次方程组和一元一次方程有什么关系?22通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。这正是下面要讨论的内容。看图,分析已知条件思考师生互动列式解答思考,同桌交流总结从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用。培养学生的合作交流能力,分析能力及表达。设 计 意 图(二)概念教学可以发现,二元一次方程组中第1个方程xy=22说明y22x,将第2个方程2xy40的y换为22x,这个方程就化为一元一次方程2x(22x)40。解这个方程,得x18。把x18代入y=22x,得y4。从而得到这个方程组的解。(教师在课件中一步步导出过程)二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。33通过对上面具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,这是从具体到抽象,从特殊到一般的认识过程。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。归纳上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法4 4这是对代入法的基本步骤的概括,代入法通过“把一个方程(必要时先做适当变形)代入另一个方程”进行等量替换,用含一个未知数的式子表示另一个未知数,从而实现消元。倾听,理解,师生互动,学生边听边练倾听,理解全班齐读记忆同桌交流学习学生归纳展示交流成果其他同学倾听,理解教师总结学生倾听和理解概念为概念的引出做好铺垫理解消元思想是本节课的重难点,要分析透彻。由浅入深,精辟总结消元思想。对概念进行深入的了解及时强调让学生对新知识掌握得更加完整。(三)例题教学例1 用代入法解方程组分析:方程中x的系数是1,用含y的式子表示x,比较简便。解:由,得xy3。 把代入,得 (5把代入可以吗?试试看。) 3(y十3)一8y=14。解这个方程,得y一1。把y=l代入,得 (6把y1代入或可以吗?)x2所以这个方程组的解是5由于方程是由方程得到的,所以它只能代入方程,而不能代入。为使学生认识到这一点,可以让其试试把代入会出现什么结果。6得到一个未知数的值后,把它代入方程都能得到另一个未知数的值。其中代入方程最简捷。为使学生认识到这一点,可以让其试试各种代入法。例题2(四)代入法解题步骤上面解方程组的过程可以用下面的框图表示:这个框图以用代入法解一个具体的二元一次方程组的过程为例,展示了代入法的解题步骤,以及各步骤的作用。它可以作为代入法解二元一次方程组的一般步骤的典型。讨论解这个方程时,可以先消去x吗?试试看。(六)小结1解二元一次方程组的思想:2引导学生总结出用代入法解二元一次方程组的解题步骤。3用代入法解二元一次方程组的技巧:变形的技巧; 代入的技巧通过这节课的学习,我们要熟练运用代入法解二元一次方程组,并能检验结果是否正确归纳:当两个二元一次方程中同一未知数的系数相反或相等(绝对值相等)时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫加减消元法,也就是我们今天要学习的方法。学生练习1、 填空:(1)已知方程组x+3y=17-3x+3y=1,两个方程只要两边 就可以消去未知数 。(2)已知方程组3m+2n=76m-2n=11,两个方程只要两边 就可以消去未知数 。归纳:当方程组中两方程的同一未知数的系数绝对值不相等时,也可以在方程两边同乘一个数,从而把某未知数系数化相同。思考独立完成老师与个别学生互动适时指导同桌交流选同学分析和回答解题过程同学回答正确适当表扬后提问5 6学生尝试并给出回答学生自由读题,分析条件,列出方程组并解答用展台展示几个具有典型性的同学的解答过程,讲解时注重思路和格式.注意代入原方程组检验教师用课件展示思维和解题流程,学生注意观察和理解.学生观察集全评议动手实践独立完成交流答案谈谈本节课的收获学生独立完成,下课后交上,老师当天批改,学生当天订正。培养学生思考及解决问题的能力检验学生对知识的掌握程度。通过总结,再次加深学生对知识的掌握程度,给学生充分发挥的空间。在学生形成解题思维之后,放手让学生完成,给学生自我展示的空间。揭露学生可能出现的问题和遇到的障碍,并及时更正,使学生少

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论