


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初三数学知识点第一章 二次根式 1 二次根式:形如 ( )的式子为二次根式; 性质: ( )是一个非负数; ; 。 2 二次根式的乘除: ; 。 3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。4 海伦-秦九韶公式: ,S是三角形的面积,p为 。第二章 一元二次方程1 一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。2 一元二次方程的解法 配方法:将方程的一边配成完全平方式,然后两边开方; 公式法: 因式分解法:左边是两个因式的乘积,右边为零。3 一元二次方程在实际问题中的应用4 韦达定理:设 是方程 的两个根,那么有 第三章 旋转 1 图形的旋转旋转:一个图形绕某一点转动一个角度的图形变换 性质:对应点到旋转中心的距离相等; 对应点与旋转中心所连的线段的夹角等于旋转角 旋转前后的图形全等。 2 中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称; 中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形; 3 关于原点对称的点的坐标 第四章 圆 1 圆、圆心、半径、直径、圆弧、弦、半圆的定义 2 垂直于弦的直径 圆是轴对称图形,任何一条直径所在的直线都是它的对称轴; 垂直于弦的直径平分弦,并且平方弦所对的两条弧; 平分弦的直径垂直弦,并且平分弦所对的两条弧。 3 弧、弦、圆心角 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 4 圆周角 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; 半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。 5 点和圆的位置关系 点在圆外 点在圆上 d=r 点在圆内 dr 定理:不在同一条直线上的三个点确定一个圆。 三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。 6直线和圆的位置关系 相交 dr 切线的性质定理:圆的切线垂直于过切点的半径; 切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线; 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。 7 圆和圆的位置关系 外离 dR+r 外切 d=R+r 相交 R-rdR+r 内切 d=R-r 内含 d0,开口向上;a0,开口向下; 对称轴: ; 顶点坐标: ; 图像的平移可以参照顶点的平移。2用函数观点看一元二次方程3 二次函数与实际问题第七章 相似1 图形的相似 相似多边形的对应边的比值相等,对应角相等; 两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似; 相似比:相似多边形对应边的比值。2 相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似; 如果两个三角形的三组对应边的比相等,那么这两个三角形相似; 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似; 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。3相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积的比等于相似比的平方。4位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。第八章 锐角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届湖北省枣阳市太平一中学化学九上期中质量检测试题含解析
- 工商局审批的有限责任公司股权转让合同模板
- 猪圈绿色低碳发展模式设计与实施合同
- 定金支付与设备租赁合同
- 货物代理合同15篇
- 2026届安徽省淮南市九上化学期中质量检测模拟试题含解析
- 2026届江苏省江都区第三中学九年级英语第一学期期末经典试题含解析
- 2026届南京市南师附中江宁分校九年级英语第一学期期末联考模拟试题含解析
- 2026届浙江省杭州市余杭区国际学校英语九上期末调研模拟试题含解析
- 2026届黑龙江省大庆市第五十五中学化学九上期中考试试题含解析
- 2025年护理疼痛试题及答案
- 年产5万吨氧化铁新材料(磁性材料及锂电材料)项目报告书
- 江苏南京2020-2023年中考满分作文53篇
- 2025-2026学年青岛版(五四制)(2024)小学科学三年级上册(全册)教学设计(附目录P230)
- 2025年电梯安全培训试题附答案
- 2025年职业技能鉴定考试(涂装工·高级/三级)历年参考题库含答案详解(5套)
- 2025年AI技术在项目管理中的应用洞察报告
- 荧光分析技术第二章荧光信号机制讲课文档
- 中班健康运蔬菜喽
- 脑疝的观察与护理
- 2025年护理核心制度试题及答案
评论
0/150
提交评论