集合知识小结.doc_第1页
集合知识小结.doc_第2页
集合知识小结.doc_第3页
集合知识小结.doc_第4页
集合知识小结.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学教案 第一章 集合与简易逻辑(第7课时) 董越课 题:集合单元小结教学目的:巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系教学重点、难点:会正确应用其概念和性质做题授课类型:复习课1. 基本概念集合的分类:有限集、无限集、空集;元素与集合的关系:属于,不属于集合元素的性质:确定性,互异性,无序性集合的表示方法:列举法、描述法、文氏图子集、空集、真子集、相等的定义、数学符号表示以及相关性质.全集的意义及符号, 理解并正确使用有关符号:2. 基本运算(填表)运算类型交 集并 集补 集定 义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|xA,或xB)设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)SA记作,即CSA=韦恩图示SA性 质AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 容斥原理有限集A的元素个数记作card(A).对于两个有限集A,B,有card(AB)= card(A)+card(B)- card(AB)(加奇减偶)3. 基本方法(一).元素分析法:集合问题的解决,主要靠其元素来完成.元素是解决一切集合问题的核心,因此抓住集合的元素进行分析,是解决问题的基本途径.(1)利用集合间元素关系进行元素分析: 例1.求符合条件P的集合p;利用结论:则P的个数 (2)利用基本图形进行元素分析: 例2已知,求M和L(3)利用分类讨论思想进行分类讨论: 例3设全集,求满足与B的补集的交集为的所有B的个数.4几种常用集合的表示方法: (1)偶数集合: (2)奇数集合: (3)方程f(x)=0的解集:(4)不等式f(x)g(x)的解集:(5).函数y=f(x)的定义域,值域,函数图象上点的集合5.集合A=,则A共有 个子集, 个真子集, 个非空真子集; 则P的个数 6常用思想方法:数形结合,分类讨论 (1) (2) 例1 设 (1) 若,求a的值; (2)若,求a的值;例2已知集合,求实数的取值范围;7。集合学习中要注意集合语言之间的转换: 集合单元小结基础训练一、选择题1、下列六个关系式: 其中正确的个数为( )(A) 6个 (B) 5个 (C) 4个 (D) 少于4个2下列各对象可以组成集合的是( )(A)与1非常接近的全体实数(B)某校2002-2003学年度笫一学期全体高一学生(C)高一年级视力比较好的同学(D)与无理数相差很小的全体实数3、已知集合满足,则一定有( )(A) (B) (C) (D) 4、集合A含有10个元素,集合B含有8个元素,集合AB含有3个元素,则集合AB的元素个数为( )(A)10个 (B)8个 (C)18个 (D) 15个5设全集U=R,M=x|x.1, N =x|0x5,则(CM)(CN)为( )(A)x|x.0 (B)x|x4, xU, 则CA( )(A)-6 , -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 (B)-6 , -5 , -4 , -3 , -2 , -1 , 1 , 2 (C) -5 , -4 , -3 , -2 , 0 , -1 , 1 (D) -5 , -4 , -3 , -2 , -1 , 1 9、已知集合,则等于(A)0,1,2,6 (B)3,7,8,(C)1,3,7,8 (D)1,3,6,7,810、满足条件的所有集合A的个数是()(A)1个(B)2个(C)3个(D)4个11、如右图,那么阴影部分所表示的集合是()UCAB(A) (B)(C) (D)12定义AB=x|xA且xB, 若A=1,2,3,4,5,B=2,3,6,则A(AB)等于( ) (A)B (B) (C) (D) 二填空题13集合P=,Q=,则AB= 14不等式|x-1|-3的解集是 15已知集合A=用列举法表示集合A= 16 已知U=则集合A= 三解答题17已知集合A=1)若A是空集,求a的取值范围;2)若A中只有一个元素,求a的值,并把这个元素写出来;3)若A中至多只有一个元素,求a的取值范围18已知全集U=R,集合A=,试用列举法表示集合A19已知全集U=x|x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论