2013届高考数学考点讲解:考点12 三角化简求值(新课标解析版).doc_第1页
2013届高考数学考点讲解:考点12 三角化简求值(新课标解析版).doc_第2页
2013届高考数学考点讲解:考点12 三角化简求值(新课标解析版).doc_第3页
2013届高考数学考点讲解:考点12 三角化简求值(新课标解析版).doc_第4页
2013届高考数学考点讲解:考点12 三角化简求值(新课标解析版).doc_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南教考资源信息网 版权所有严禁转载考点12 三角化简求值【高考再现】热点一 利用两角和差的正弦、余弦、正切公式求值1. (2012年高考(重庆文)()ABCD【方法总结】两角和与差的三角函数公式可看作是诱导公式的推广,可用、的三角函数表示的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.(1)运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan tan tan()(1tan tan )和二倍角的余弦公式的多种变形等(2)应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.热点二 利用倍角公式以及诱导公式求值1. (2012年高考(辽宁文)已知,(0,),则=()A1BCD12. (2012年高考(江西文)若,则tan2=()A-BC-D【答案】B 【解析】主要考查三角函数的运算,分子分母同时除以可得,带入所求式可得结果.3. (2012年高考(大纲文)已知为第二象限角,则()AB CD4. (2012年高考(山东理)若,则()ABCD5. (2012年高考(江西理)若tan+ =4,则sin2=()ABCD【答案】D【解析】本题考查三角恒等变形式以及转化与化归的数学思想. 因为,所以. 6. (2012年高考(大纲理)已知为第二象限角,则()ABCD【方法总结】一、利用诱导公式化简求值时的原则1“负化正”,运用公式三将任意负角的三角函数化为任意正角的三角函数2“大化小”,利用公式一将大于360的角的三角函数化为0到360的三角函数,利用公式二将大于180的角的三角函数化为0到180的三角函数3“小化锐”,利用公式六将大于90的角化为0到90的角的三角函数4“锐求值”,得到0到90的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得.二、利用倍角公式化简求值二倍角公式实际就是由两角和公式中令所得特别地,对于余弦:cos 2cos2sin2 2cos2112sin2,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现【考点剖析】一明确要求二命题方向1考查利用三角函数的公式对三角函数式进行化简求值.2.公式逆用、变形应用是高考热点3.题型以选择题、解答题为主.三规律总结基础梳理2诱导公式公式一:sin(2k)sin ,cos(2k)cos_,其中kZ.公式二:sin()sin_,cos()cos_,tan()tan .公式三:sin()sin_,cos()cos_.公式四:sin()sin ,cos()cos_.公式五:sincos_,cossin .公式六:sincos_,cossin_3两角和与差的正弦、余弦、正切公式4二倍角的正弦、余弦、正切公式(1)S2:sin 22sin_cos_;(2)C2:cos 2cos2sin22cos2112sin2;(3)T2:tan 2.5有关公式的逆用、变形等6函数f()acos bsin (a,b为常数),可以化为f()sin()或f()cos(),其中可由a,b的值唯一确定一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限三种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan 化成正、余弦(2)和积转换法:利用(sin cos )212sin cos 的关系进行变形、转化(3)巧用“1”的变换:1sin2cos2cos2(1tan2)tan.三个防范两个技巧(1)拆角、拼角技巧:2()();();.(2)化简技巧:切化弦、“1”的代换等三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等【基础练习】1(教材习题改编)已知,则等于( )A B C D2(经典习题)已知函数,则等于( )A B C D3(经典习题)已知,则等于( )A3 B6 C12 D【答案】A【解析】4(经典习题)sin 585的值为 () A B. C D.【答案】A【解析】:sin 585sin(360225)sin 225sin(18045)sin 45.5(教材习题改编)已知sin()cos(2),|,则等于() A B C. D.6(经典习题)若,则的值为 () A0 B. C1 D.【答案】B【解析】:7. (教材习题改编) 的值是 () A. B. C D8.(经典习题)若,是第三象限角,则 () A B. C D.【答案】A【解析】:由已知条件sin ,sin sin cos .9(教材习题改编)已知sin 且,则sin 2cos 2 等于_10(教材习题改编)如果sin(A),那么cos 的值是_【解析】:sin(A),sin A.cos sin A.11(人教A版教材习题改编)下列各式的值为的是()A2cos2 1 B12sin275C. Dsin 15cos 1512(人教A版教材习题改编)已知sin(),则cos 的值为()A B. C. D【名校模拟】一基础扎实1(台州2012高三调研试卷理)( ) (A) (B) (C) (D)【答案】D【解析】2(2012嘉兴调研)计算4cos10_.3(2012衡阳模拟)已知sin ,则tan 2的值为_【解析】:由sin ,可得cos ,tan .tan 2.4(2012赣州模拟)已知sin cos ,则sin 的值为() A. B. C. D.5(2012长沙模拟)若角的终边落在第三象限,则的值为 () A3 B3 C1 D16(2012海淀区高三年级第二学期期末练习文)的值为(A) (B) (C) (D) 【答案】C【解析】7(2012年石家庄市高中毕业班教学质量检测(二)文)=( )A B- C D-【答案】A 【解析】故答案为A.8(长春市实验中学2012届高三模拟考试(文)) 已知,则 等于( ) 9(河南省郑州市2012届高三第二次质量预测文)已知,则=_【答案】: 【解析】:依题意得,.二能力拔高 .1(2012宁波模拟)化简:_.2(中原六校联谊2012年高三第一次联考理)已知则的值是( )ABCD 【答案】C【解析】3(浙江省2012届重点中学协作体高三第二学期4月联考试题理 )已知,则 ( )A B C D 4(山西省2012年高考考前适应性训练理)( ) A B C D 25(浙江省杭州学军中学2012届高三第二次月考理,则的值为( )A B C D6(2012湖州一中模拟)已知cos ,cos(),且0,(1)求tan 2的值;(2)求.7(2012温州模拟)若3,tan()2, 则tan(2)_.【解析】:由条件知3,tan 2.tan(2)tan ()8(2011杭州师大附中月考)如果f(tan x)sin2x5sin xcos x,那么f(5)_.9(2012杭州调研)点A(sin 2 011,cos 2 011)在直角坐标平面上位于()A第一象限 B第二象限C第三象限 D第四象限10(河北省唐山市20112012学年度高三年级第二次模拟考试理)已知是第三象限的角,且tan=2,则sin(+)= A B CD 【答案】 A【解析】因为,为第三象限,所以,所以 故选A.11(成都市2012届高中毕业班第二次诊断性检测理)若,则=( )(A) (B) (C) D)12(海南省2012洋浦中学高三第三次月考)已知,则的值为 ( )A B. 1 C. D. 2【答案】B【解析】解:因为,则,利用差角的正切公式可以求解得到为1。13(宁波四中2011学年第一学期期末考试理)若,且 ,则 .三提升自我1(2012年长春市高中毕业班第二次调研测试文)已知(,),则 等于( )A.B. C. D. 【答案】B 【解析】由题意可知,.故选B.2(2012洛阳示范高中联考高三理)已知,则的值为( )A B C D3(2012温州模拟)已知,化简_.4(江西省2012届十所重点中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论