2011-10-31目标跟踪的算法总结.doc_第1页
2011-10-31目标跟踪的算法总结.doc_第2页
2011-10-31目标跟踪的算法总结.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

视频目标跟踪的算法总结:1. Meanshift(均值漂移算法):1975年有Fukunaga提出均值漂移算法是一种基于密度梯度上升的非参数方法,通过迭代运算找到目标位置,实现目标跟踪。它显著的优点是算法计算量小运算速度快,简单易实现,很适合于实时跟踪场合;缺点是跟踪小目标和快速移动目标时常常失败,而且在全部遮挡情况下不能自我恢复跟踪。算法步骤:先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.下面是MeanShift算法流程图:2. CamShift跟踪算法: 它是MeanShift算法的改进,连续自适应的MeanShift算法,CamShift算法的全称是Continuously Adaptive Mean-SHIFT,它的基本思想是视频图像的所有帧作MeanShift运算,并将上一帧的结果(即Search Window的中心和大小)作为下一帧MeanShift算法的Search Window的初始值,如此迭代下去。Camshift 关键就在于当目标的大小发生改变的时候,此算法可以自适应调整目标区域继续跟踪。对于OPENCV中的CAMSHIFT例子,是通过计算目标HSV空间下的HUE分量直方图,通过直方图反向投影得到目标像素的概率分布,然后通过调用CV库中的CAMSHIFT算法,自动跟踪并调整目标窗口的中心位置与大小。3. 粒子滤波跟踪算法:优点:粒子滤波具有很强鲁棒性即抗遮挡能力强,可并行缺点:粒子滤波需要大量的样本的后验概率,计算量大和退化现象等缺陷是粒子滤波的瓶颈。粒子滤波在视频跟踪上被称为凝聚算法(CONDENsATION)。4. Kalman Filter(卡尔曼滤波算法):Dr Kalman提出Kalman Filter 算法实时性强,但抗遮挡能力弱。现在跟踪算法的发展趋势:一种算法的单独改进,对于Meanshift算法基本上是改进其核函数和巴氏距离,其效果不是很有效。另一种改进是综合两种算法,如果一个算法如果失效,转到另一个算法上,其思想是:一个算法注重时效性,另一个算法注重鲁棒性。有两种经典的组合:卡尔曼滤波和粒子滤波 粒子滤波和均值漂移个人认识

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论