




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新课标下数学史与数学教育的整合摘要:数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣,培养探索精神,对于揭示数学阻碍文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义.本文以数学教育方式为切入点,探讨数学史与数学教育整合及其教育方式,提出数学史运用于数学教育的三个层次和将数学家发现数学的思维方式与机制迁移到数学教育中以及基于数学思想的历史与逻辑的数学教育方式,指出数学教育的基本落脚点就是培养学生学会“如何提出数学问题(数学意识)、如何思考数学问题(数学地思维)、如何解决数学问题(数学思维与实践能力)和如何表达数学问题(数学思维过程的逻辑把握)”等观点。 本文密切联系中学数学学习和数学教学工作,对在中学数学教学中渗透数学史教育进行了研究。从目前中学数学教学面临的尴尬和原因分析,数学史在中学数学教学中的意义、作用和原则,在中学数学教学中渗透数学史教育的方法等方面讨论了数学史在中学数学教学中的渗透问题。并讨论了在中学数学教学中渗透数学史教育应注意的问题,最后提出了在中学数学教学中渗透数学史教育的一些建议。在理论和实践相结合的基础上给出了在中学数学教学中渗透数学史教育的具体方法。指出了数学史在中学数学教学中渗透对改善中学数学教学的作用。 关键词:数学史;数学教育;整合;数学教育方式 作用和价值.Abstract: The history of mathematics to the real source reveal mathematical knowledge and application, to guide the students to experience the process of mathematical thinking real, create a kind of exploration and research of mathematics learning atmosphere, to stimulate students interest in mathematics, culture spirit of exploration, to reveal the status and influence of mathematical hinder the cultural history and the progress of science history, then reveals its the humanistic value, all has the vital significance.本文以数学教育方式为切入点,探讨数学史与数学教育整合及其教育方式,提出数学史运用于数学教育的三个层次和将数学家发现数学的思维方式与机制迁移到数学教育中以及基于数学思想的历史与逻辑的数学教育方式,指出数学教育的基本落脚点就是培养学生学会“如何提出数学问题(数学意识)、如何思考数学问题(数学地思维)、如何解决数学问题(数学思维与实践能力)和如何表达数学问题(数学思维过程的逻辑把握)”等观点。 In this paper, the way of mathematics education as the breakthrough point, study the history of mathematics and mathematics education and integration of education, put forward the mathematics history into three levels of mathematics education and the mathematicians mathematical thinking mode and mechanism of migration to the mathematics education and the history and logic of mathematical thinking methods of Mathematics Education based on mathematics education, points out that the basic goal is to train students to learn how to put forward the mathematics problem (mathematics consciousness), how to think about Mathematics (mathematical thinking), how to solve mathematics problems (mathematical thinking and practice ability) and mathematical problem how to express (mathematical thinking process logic grasp) perspective. 本文密切联系中学数学学习和数学教学工作,对在中学数学教学中渗透数学史教育进行了研究。从目前中学数学教学面临的尴尬和原因分析,数学史在中学数学教学中的意义、作用和原则,在中学数学教学中渗透数学史教育的方法等方面讨论了数学史在中学数学教学中的渗透问题。并讨论了在中学数学教学中渗透数学史教育应注意的问题,最后提出了在中学数学教学中渗透数学史教育的一些建议。在理论和实践相结合的基础上给出了在中学数学教学中渗透数学史教育的具体方法。指出了数学史在中学数学教学中渗透对改善中学数学教学的作用。 In this paper, in close contact with the middle school mathematics learning and mathematics teaching work, the penetration of mathematical history education in the middle school mathematics teaching is studied. From the analysis of embarrassment and reasons facing the current middle school mathematics teaching, the history of mathematics in middle school mathematics teaching significance, functions and principles, in the middle school mathematics teaching seepage mathematical history education discussed the penetration of history of mathematics in middle school mathematics teaching. And discusses the permeability should pay attention to the education of the history of mathematics in mathematics teaching in middle school, and finally put forward some suggestions of infiltration mathematical history education in the middle school mathematics teaching. Based on the combination of theory and practice is given on the specific method of math history education in middle school mathematics teaching. The history of mathematics to middle school mathematics teaching. Key word.数学史;数学教育;整合;数学教育方式 作用和价值. History of mathematics; mathematics education; integration; mathematics education function and value.引言 作为一门学科,“数学史”一词对于广大中学教师来说也许并不熟悉,毕竟决大多数教师都未曾把它当作一个学科来研究或学习过。不过,如果把它作为一般的名词“数学的历史”来理解当然不会陌生。因为我们以前的老课程尽管在这方面并不是非常注重,但有些教师还是会有意无意地获得一些与数学知识本身发展的来龙去脉有关的知识。 就我从事中学数学教育多年所得到的经验而言,中学数学教学不得不面对的一个尴尬:想学,学不懂;想教,又教不会。这大大影响了数学教学质量的提高和创新能力的培养。首先学生是想学,学不懂。大多数学生都认为数学重要,很想学好。不少学生虽然学习数学也很努力,但成绩却总不尽如人意。在他们看来,学数学比登天还难,教科书中那一行行数字、一串串符号,简直就是一个个砸不开、敲不烂的顽石,很难知道其中包含着什么,只好死记硬背,使得数学学习变得枯燥乏味,毫无兴趣。无兴趣、无激情自然无动力,学习灵感就更谈不上了。再者是教师想教,又教不会。不少数学教师常常为教不会数学而犯难。他们为了讲好数学课确实下了一番工夫,有的废寝忘食的工作,有的通宵达旦的备课,有的一遍又一遍的讲述,但有些学生就是不理解。他们只好布置大量的作业,实行题海战术,到头来学生作业负担加重,学习成绩还是上不来。 造成这种尴尬局面的原因是多方面的,其中最主要的原因恐怕是学科本身的特性和教学方法的不当。数学来源于实践,是在解决实际问题中产生的。随着数学的发展,理性的思辨数学产生了,人们从纯理论的假设出发,推导出相应的数学理论,形成纯粹数学,将数学从原始形态转化为学术形态,内容的抽象、结构的严谨、应用的广泛和知识的连续特征逐渐显现。数学教材从知识的逻辑性出发,将原来数学形成的历史一扫而空,剩下的只是公式的堆积和字母数字的堆砌,学生根本看不到活的数学。正如一位数学家所讲:“过度形式化,把光彩照人的数学女王,用X光看成一副骨架。”在数学教育中再也看不到实际的需求和理性的假设,数学成为死的知识。加之数学教师不会合理有效地把数学的学术形态转化为教育形态,仍然采取“烧中段”的教学法,便出现了教师教死书、死教书,学生读死书、死读书的数学学习法。因而,枯燥、乏味、难理解,就自然而然地成为数学的代名词。就上述原因而言,解决的方法也很多,在中学数学教学中渗透数学史教育就是较好的方法之一。 在课程改革前的中小学数学教学大纲和教材中,数学史主要起两方面作用:通过介绍中国古代数学成就进行爱国主义教育;通过提供少量“花絮”提高学生的学习兴趣。在新一轮中学数学课程改革中,数学史首先被看作理解数学的一种途径。教材中应当包含一些辅助材料,如史料、进一步研究的问题、 数学家介绍、背景材料等,还可以介绍数学在现代生活中的广泛应用(如建筑、计算机科学 、遥感、CT技术、天气预报等),这样在对数学内容的学习过程中,不仅可以使学生对数学的发展过程有所了解,激发学生学习数学的兴趣,还可以使学生体会数学在人类发展历史中的作用和价值。义务教育阶段各科课程标准都围绕三个基本方面:知识与技能,过程与方法,情感态度与价值观,对于理科课程,还包括理解科学、技术与社会之间的关系,尝试科学教育与人文教育的融合。数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣,培养探索精神,对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。第一章:数学史首先应被看作理解数学的一种途径 (一)、认识数学的发展规律,了解榜样的激励作用,减少学生数学学习时走“弯路”。数学史让我们认识数学发展的规律,了解昨天,指导今天,预见明天。从前人研究数学的经验教训中获取鼓舞和力量,以指导和推动我们今天的数学学习和研究,少走弯路。医治学生“专爱碰壁”毛病的良药之一就是让他们学一些数学史和科学史,不要把宝贵的青春浪费在徒劳的“研究”上。平时的教学中,要结合数学史教育,引导学生把精力用在基础知识的学习和基本技能的提高上,多做一些有意义的探究活动,以适应新课改学习方式的需要。许多大数学家在成长过程中遭遇过挫折,不少著名数学家都犯过今天看来相当可笑的错误,介绍一些大数学家是如何遭遇挫折和犯错误的,不仅可以使学生在数学方法上从反面获得全新的体会(这往往能够获得比从正面讲解更好的效果),而且知道大数学家也同样会犯错误、遭遇挫折,对学生正确看待学习过程中遇到的困难、树立学习数学的自信心会产生重要的作用。数学思想形成中的曲折与艰辛以及那些伟大的探索者的失败与成功还可以使学生体会到,数学不仅仅是训练思维的体操,也不仅仅是科学研究的工具,它有着丰富的人文内涵。 (二)、了解数学理论发展的历史背景,加深理解数学理论、公式、定理和数学思维。一般说来,历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然性、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。它既可以激发学生对数学的兴趣,培养他们的探索精神,而历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。写在书本上的数学公式、定理、理论都是前人苦心钻研经过无数次的探索、挫折和失败才形成的,是在当时社会生产、人们的哲学思想、数学家的独创精神联系在一起的活生生的数学。但是,我们从书本的条文上,已看不到数学成长、发展的生动的一面,而只看到数学的浓缩的形式,这就妨碍我们对这些数学理论的深刻理解。如在七年级教空间与图形部分前,可以向学生介绍有关的数学背景知识,特别介绍欧几里得的几何原本,使学生初步感受几何演绎体系对数学发展和人类文明的价值。 (三)、抓住数学历史名题,丰富教学内容,展现学习数学新途经。 对于那些需要通过重复训练才能达到的目标,数学历史名题可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性,提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出与解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题,或许这个问题曾难住过许多有名的人物,学生会感到一种智力的挑战,也会从学习中获得成功的享受,这对于学生建立良好的情感体验无疑是十分重要的;最后,历史名题往往可以提供生动的人文背景。 (四)、展望学习数学史为德育教育提供了舞台 在标准的要求下,德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下。 首先,学习数学史可以对学生进行爱国主义教育。现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。标准中“数学史选讲”专题3就是“中国古代数学瑰宝”,提到九章算术、“孙子定理”这些有代表意义的中国古代数学成就。 然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。标准中“数学史选讲”专题11 “中国现代数学的发展”也提到要介绍“现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程”。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。 其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。 最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王bazaar、美国第20任总统Car field等都给出过它的证明。1940年,美国数学家卢米斯在所著毕达哥拉斯命题艺术的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。 向学生展示历史上的开放性的数学问题将使他们了解到,数学并不是一个静止的、已经完成的领域,而是一个开放性的系统,认识到数学正是在猜想、证明、犯错误、修正错误中发展进化的,数学进步是对传统观念的革新,从而激发学生的非常规思维,使他们感受到,抓住恰当的、有价值的数学问题将是激动人心的事情。数学中有许多著名的反例,通常的教科书中很少会涉及它们。结合历史介绍一些数学中的反例,可以从反面给学生以强烈的震撼,加深他们对相应问题的理解。 1.数学史概述数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。 从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。 数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。 史学家的职责就是根据史料来叙述历史,求实是史学的基本准则。从17世纪始,西方历史学便形成了考据学,在中国出现更早,尤鼎盛于清代乾嘉时期,时至今日仍为历史研究之主要方法,只不过随着时代的进步,考据方法在不断改进,应用范围在不断拓宽而已。当然,应该认识到,史料存在真伪,考证过程中涉及到考证者的心理状态,这就必然影响到考证材料的取舍与考证的结果。就是说,历史考证结论的真实性是相对的。同时又应该认识到,考据也非史学研究的最终目的,数学史研究又不能为考证而考证。 不会比较就不会思考, 而且所有的科学思考与调查都不可缺少比较,或者说,比较是认识的开始。今日世界的发展是多极的,不同国家和地区、不同民族之间在文化交流中共同发展,因而随着多元化世界文明史研究的展开与西方中心论观念的淡化,异质的区域文明日益受到重视,从而不同地域的数学文化的比较以及数学交流史研究也日趋活跃。数学史的比较研究往往围绕数学成果、数学科学范式、数学发展的社会背景等三方面而展开。数学史既属史学领域,又属数学科学领域,因此,数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。 中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。 2.祖冲之 祖冲之是我国杰出的数学家、天文学家、文学家、地质学家、地理学家和科学家。南北朝时期人,汉族,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县),为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程,祖冲之的父亲也在朝中做官。祖冲之在世界数学史上第一次将圆周率()值计算到小数点后七位,即3.1415926到3.1415927之间。他提出约率227和密率355113,这一密率值是世界上最早提出的,比欧洲早一千多年,所以有人主张叫它“祖率”也就是圆周率的祖先。他将自己的数学研究成果汇集成一部著作,名为缀术,唐朝国学曾经将此书定为数学课本。他编制的大明历,第一次将“岁差”引进历法。提出在391年中设置144个闰月。推算出一回归年的长度为365.24281481日,误差只有50秒左右。 3.从祖冲之看数学史教育价值祖冲之在世界数学史上第一次将圆周率()值计算到小数点后七位,即3.1415926到3.1415927之间,而这个成就比欧洲同等成就足足领先了一千多年,求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。祖冲之经过刻苦钻研,继承和发展了前辈科学家的优秀成果。他对于圆周率的研究,就是他对于我国乃至世界的一个突出贡献。祖冲之对圆周率数值的精确推算值,用他的名字被命名为“祖冲之圆周率”,简称“祖率”。这个成就让民族自豪感相当强烈的中国人可以骄傲的向世界宣告:我自豪我是中国人,几千年以前我们的祖先祖冲之就领先世界一千年了!这一成就不知道已经激励了多少代中国的数学爱好者,也正是因为这一成就不知道出现了多少著名的数学家。一直以来数学就被看作各种学科中最麻烦、最枯燥的课程,如果没有这样的精神动力在支撑我们一代一代的学生,我想能坚持到最后的数学家可能会更少。 在推算圆周率时,祖冲之付出了不知多少辛勤的劳动。如果从正六边形算起,算到24576边时,就要把同一运算程序反复进行十二次,而且每一运算程序又包括加减乘除和开方等十多个步骤。我们现在用纸笔算盘来进行这样的计算,也是极其吃力的。当时祖冲之进行这样繁难的计算,只能用筹码(小竹棍)来逐步推演。如果头脑不是十分冷静精细,没有坚韧不拔的毅力,是绝对不会成功的。祖冲之顽强刻苦的研究精神,是很值得推崇的。要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有效数字的小数进行加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。一千多年之后的我们有这样舒适的学习环境,有这样好的学习条件,如果把当时祖冲之的计算量放在现在的计算机上可能只是几秒的时间,而我们伟大的祖先却不知道用了多少个日日夜夜。既然我们已经有如此好的条件和环境,我们就没有理由不像前人那样刻苦努力,哪怕只是祖冲之当时辛苦的千分之一,我想若干年后的我们也不会是一般人。祖冲之之所以有如此伟大的成就,还有个很重要的原因就是他善于学习,善于研究前人的经验,而且他有一个最大的优点就是吃苦耐劳,对于古代科学家刘歆、张衡、阚泽、刘徽、刘洪等人的著述都作了深入的研究,充分吸取其中一切有用的东西对他计算圆周率有相当重要的帮助。第二章:数学史与中学数学教育的内容整合在中学数学教育中有必要进行数学史的教学。结合整个中学数学教材内容,通盘计划,全面安排;应以历史唯物主义观点选取数学史料对学生进行介绍;还应注意学生的可接受性原则。引进和讲授数学史的方法可以多样化,如结合新教材进行简短的历史史料插话;利用一堂课的大部分时间进行专门讲授;成立课题组进行探究,有计划有组织地实施课题的各项工作;组织专门的数学晚会、数学壁报、数学报告会以及伟大数学家生忌纪念会等形式进行介绍。具体说来,数学史与中学数学教育的内容整合可从以下几方面入手:(一)在数与代数部分,可以穿插介绍代数及代数语言的历史,并将促成代数兴起与发展的重要人物和有关史迹的图片呈现在学生的面前,也可以介绍一些有关正负数和无理数的历史、一些重要符号的起源与演变、与方程及其解法有关的材料(如九章算术、秦九韶法)、函数概念的起源、发展与演变等内容。(二)在空间与图形部分,可以通过以下线索向学生介绍有关的数学背景知识:介绍欧几里得几何原本,使学生初步感受几何演绎体系对数学发展和人类文明的价值;介绍勾股定理的几个著名证法(如欧几里得证法、赵爽证法等)及其有关的一些著名问题,使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵;介绍机器证明的有关内容及我国数学家的突出贡献;简要介绍圆周率的历史,使学生领略与有关的方法、数值、公式、性质的历史内涵和现代价值(如值精确计算已经成为评价电脑性能的最佳方法之一);结合有关教学内容介绍古希腊及中国古代的割圆术,使学生初步感受数学的逼近思想以及数学在不同文化背景下的内涵;作为数学欣赏,介绍尺规作图与几何三大难题、黄金分割、哥尼斯堡七桥问题等专题,使学生感受其中的数学思想方法,领略数学命题和数学方法的美学价值。(三)在统计与概率部分,可以介绍一些有关概率论的起源、掷硬币试验、布丰(Buffon)投针问 题与几何概率等历史事实,统计与概率在密码学等方面的应用,这样可以使学生对人类把握随机现象的历程有一个了解,对于学生进一步学习与发展有一定的激励作用。数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神等等。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,中学数学课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,同时设立“数学史选讲”等专题,让数学史与中学数学教育有机整合。 (四)数学史料在课堂教学的合理运用,能够激发学生的学习兴趣,有助于学生树立勇攀科学高峰的信心。 课堂是教师发挥教学主导作用的主阵地,也是学生获得大量知识的主要空间。在数学教学过程中,合理地运用数学史知识,可以丰富教学内容,增加教学的生动性,趣味性和思想性;提高学生掌握知识的深刻性,积极性和应用性,培养学生开拓创新,追求真理的高尚品质。因此,作为数学知识的传播者,教师不仅要教会学生解题和应用,还要懂得古为今用,取精用弘,灵活地把数学史的文化内涵,文化价值应用于课堂教学。 (五)通过数学史对数学教育思想、数学教育改革和文化素质教育的影响,阐述了数学史与数学教育的互动关系,强调了数学史对于数学教育研究的现实意义。 (六)从数学观、数学兴趣、数学学习、数学思维、数学思想方法、学生思想品德和教师素质等方面论述了数学史在数学教育中的作用 有助于我们正确认识数学史的教育价值,更好地发挥数学史的教育功能。并针对数学教育教学中存在的一些问题提出若干见解。同时作为数学教育改革的一种尝试,本文以“勾股定理”为例,通过如何收集史料、如何进行教学设计、如何组织教学,将数学史与数学教学相结合,由此探讨了数学史与数学教学的关系。 当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。第三章:数学史的教育价值 (一)数学史弥补了中学课程上的空白,丰富了中学数学教育的内容。 纵观几十年来的中学数学教材,涉及数学史的内容很少,也比较零碎,。在过去很长的时期里,我们的中学数学教育已基本上形成了重知识的双基教学和能力培养,轻知识的素养教育和情感熏陶;重形式体系和逻辑推理,轻人文意义和算理算法的惯性,这也就造成了不少学生能求解千奇百怪的数学难题(仅仅是“习题”,而不是“问题”),而不了解最基本的道理,能记住种种解题的模式,却忘掉了数学的本和源,读完中小学的12年后,留给他们的数学仅仅是加减乘除,开方乘方而已。当问到陈省身是谁?有的学生反而问:“他是不是一个大款?还是一个歌星?黑客?”而有些学生对希腊的几何大师欧几里得、数学之神阿基米德;德国的数学王子高斯,数学巨星希尔伯特;身残志坚的瑞士数学英雄欧拉,甚至连我国古代的著名数学家祖冲之、刘徽等都不知道,这不能不说是我们中学数学教育的一大缺陷。通过数学史的学习,将弥补了数学课程上的空白,为学生构建一个了解数学的产生和发展历程的平台,也给学生提供了了解若干重要数学事件、数学人物和数学成果的机会。 (二)数学史知识具有提高学生数学素养的价值。 正如哲学家培根所说的“读史使人明智”,学生学习一些数学史知识,可以较好地了解数学的发展轨迹,更好地体会数学概念所反映的思想方法,感受数学家们刻苦钻研,勇于开拓和锲而不舍的精神,这对开阔视野、启发思维以及学习和掌握数学知识大有益处。 第一,能够提高学生对数学问题的解决技能,数学史提供了解决类似问题的多种途径,不同算法和多种策略,促进学生形成思考多种解题方法并给予合理评价的能力; 第二,能让学生奠定深刻理解数学问题的基础和意识,数学史知识能使教学主题容易被学生接受,也能指明特定思想和程序产生的由来,为深刻地理解数学概念做好了铺垫; 第三,有助于学生认识和建立丰富多样的数学联系,包括不同数学知识之间的联系,数学及其应用之间的联系,数学与其他学科之间的联系,而这些联系承载着不同的时代,超越了不同的文化,也跨越了不同的领域; 第四,能够让学生明确数学与社会的相互作用,数学与社会的作用是互动的,一方面,不同文化的规范和实践影响了数学,社会实践是数学发展的动力,生活实践是数学的真正源泉,另一方面,数学也影响了人们思考问题和改造世界的方式。 第五,有利于数学知识的掌握和数学能力的提高,数学是一门历史性学科,数学史记录了重大的数学理论和思想方法的产生、发展过程,如解析几何的思想,微积分思想、非欧几何的思想等。在数学教学中,如果结合数学内容,引用相应的生动的数学史料,就会把学生带到数学知识系统产生、发展的历史进程中,使学生不仅知其然,而且知其所以然,为学生加深数学知识的理解和数学能力的提高创造了有益的条件。这些功能对于我们今天运用科学史于科学教育的实践具有一定的借鉴和指导意义 ,也让我们树立这样的信念 :数学史并不是无用的学问, 第六,有利于学生数学的思考,数学家曾说过:“数学的情况有如造型艺术,向先贤们学习不但有益,而且必要。培养学习者正确的哲学观点它以其深刻浑厚的内容、生动流畅的描述和扣人心弦的数学家故事呈现出数学发展历程的坎坷与艰辛,成功与愉悦。这无疑是既弥补了中学数学课程上的空白,也增进了学生对数学的理解。 第七,数学史知识具有提高学生数学素养的价值。数学发展的历史是一部内容丰富,思想深刻的历史,它具有提高学生数学素养的重要价值,所谓数学素养,就是指数学意识、问题解决、逻辑推理和信息交流。能够提高学生对数学问题的解决技能,数学史提供了解决类似问题的多种途径,不同算法和多种策略,促进学生形成思考多种解题方法并给予合理评价的能力;能让学生奠定深刻理解数学问题的基础和意识,数学史知识能使教学主题容易被学生接受,也能指明特定思想和程序产生的由来,为深刻地理解数学概念做好了铺垫;有助于学生认识和建立丰富多样的数学联系,包括不同数学知识之间的联系,数学及其应用之间的联系,数学与其他学科之间整合,在不同的时间、空间进行着联系;能够让学生明确数学与社会的相互作用,数学与社会的作用是互动的,不同文化的规范和实践影响了数学,社会实践是数学发展的动力,生活实践是数学的真正源泉,数学也影响了人们思考问题和改造世界的方式。 总而言之,数学史在提高学生数学素养上有它独特的魅力。它有助于学生培养严谨、朴实的科学态度和勤奋、自强的工作态度,逐步形成理智、自律的人格特征和宽容、谦恭的人文精神。 (三) 学习数学史有利于培养学生正确的数学思维方式和数学观 现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁.为了保持了知识的系统性,把教学内容按定义,定理,证明,推论,例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少.虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质,定理,然后用来解决问题的错误观点.所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题,猜想,论证,检验,完善,一步一步成熟起来的.影响了学生正确数学思维方式的形成. 数学史的学习有利于缓解这个矛盾.通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式.这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿,莱布尼兹在古希腊的穷竭法,求抛物线弓形面积等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对无穷小的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充,完善下,经过几十年才逐步成熟起来的.数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想,方法代表着该内容相对于以往内容的实质性进步.对这种创造过程的了解,可以使学生体会到一种活的,真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式. (四)学习数学史为德育教育提供了舞台 在标准的要求下,德育教育已经不是像以前那样主要是政治,语文,历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下.首先,学习数学史可以对学生进行爱国主义教育.现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽,祖冲之,祖暅,杨辉,秦九韶,李冶,朱世杰等一批优秀的数学家,有中国剩余定理,祖暅公理,割圆术等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年.标准中数学史选讲专题3就是中国古代数学瑰宝,提到九章算术,孙子定理这些有代表意义的中国古代数学成就. 然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上.从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程.标准中数学史选讲专题11 中国现代数学的发展也提到要介绍现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程.在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的国际意识,让学生认识到爱国主义不是体现在以己之长,说人之短上,在科学发现上全人类应该相互学习,互相借鉴,共同提高,我们要尊重外国的数学成就,虚心的学习,洋为中用. 其次,学习数学史可以引导学生学习数学家的优秀品质.任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点.数学家们或是坚持真理,不畏权威,或是坚持不懈,努力追求,很多人甚至付出毕生的努力.阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是我不能留给后人一条没有证完的定理.欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表.对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难,树立学习数学的信心会产生重要的作用. 最后,学习数学史可以提高学生的美学修养.数学是美的,无数数学家都为这种数学的美所折服.能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美.很多著名的数学定理,原理都闪现着美学的光辉.例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用.两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇,印度国王,美国第20任总统等都给出过它的证明.1940年,美国数学家卢米斯在所著毕达哥拉斯命题艺术的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力.黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系.同时,在感叹和欣赏几何图形的对称美,尺规作图的简单美,体积三角公式的统一美,非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口. (五)中国数学史能够激发学生为祖国现代数学的振兴而读书的学习热情。 中国是一个具有五千年悠久历史的文明古国,涌现了刘徽、祖冲之、赵爽、秦九韶、杨辉等一批数学名家,创造了许许多多灿烂辉煌的数学成就。例如,较为著名的数学著作周髀算经、九章算术和算经十书;数学历史名题“韩信点兵问题”、“鸡免同笼问题”和“百钱买百鸡问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态园林修复技术-第1篇-洞察及研究
- 2025年乡镇畜牧站畜牧档案员招聘面试模拟题集
- 2025年广播媒体融合与传播效果优化策略研究报告
- 2025年中医基础理论考试试题及答案
- 2025年上半年浙江杭州高新区(滨江)劳动保障监察专职人员招聘6人模拟试卷及答案详解1套
- 2025年福建省晋江市建设投资控股集团有限公司及其权属子公司招聘31人模拟试卷及答案详解(考点梳理)
- 2025年菏泽牡丹区区直事业单位公开引进高层次急需紧缺人才(25人)考前自测高频考点模拟试题及答案详解(夺冠系列)
- 家庭教育指导服务行业供需关系重构:2025年市场发展研究报告
- 2025年5G通信基站固态电池技术创新与应用分析报告
- 人教版八年级下册道德与法治4.1 公民基本义务说课稿
- 2024年江苏南通中考满分作文《前进我有我的姿态》13
- 行前说明会流程
- 人教版七年级历史下册各单元测试题(全套,含答案)
- 《另眼观察》(课件)-2024-2025学年沪书画版五四学制(2024)美术六年级上册
- 2023部编新人教版五年级(上册)道德与法治全册教案
- 竞选竞选大学心理委员参考课件
- 体育运动概论1
- DZ∕T 0248-2014 岩石地球化学测量技术规程(正式版)
- FBS-GC-001-分布式光伏施工日志
- 月考试卷讲评课课件
- 游戏:看表情符号猜成语PPT
评论
0/150
提交评论