




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学设计案例 学科:数学 授课年级:初三章节名称圆和圆的位置关系计划学时 1 h学习内容分析本节课是北师大版义务教育初中数学九年级下册第三章第六节,主要内容是圆和圆的位置关系.教材处理方式本节圆和圆的位置关系主要讲点和圆的位置关系,可从直线和圆的位置关系为基础引入,利用平移实验,让学生从实践中入手,采用观察、猜想、概括的方法直观地探索得到圆和圆的五种位置关系,从而实现从感性认识到理性认识的逐步深化.教学目标1掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;2通过两圆的位置关系,培养学生的分类能力和数形结合能力;3通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力。教学重点两圆的五种位置与两圆的半径、圆心距的数量之间的关系教学难点两圆位置关系及判定教学设计思路本节课的教学设计内容主要分为六部分:(一)复习、引出问题1复习:直线和圆有几种位置关系?各是怎样定义的?(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交各种位置关系是通过直线与圆的公共点的个数来定义的。2引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?(二)观察、分类,得出概念1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离(图(1)(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切这个唯一的公共点叫做切点(图(2)(3)相交:两个圆有两个公共点,此时叫做这两个圆相交(图(3)(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切这个唯一的公共点叫做切点(图(4)(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)两圆同心是两圆内含的一个特例 (图(6)2、归纳:(1)两圆外离与内含时,两圆都无公共点(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切)教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交除以上关系外,还有其它关系吗?可能不可能有三个公共点?结论:在同一平面内任意两圆只存在以上五种位置关系(三)分析、研究1、相切两圆的性质让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:如果两个圆相切,那么切点一定在连心线上这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明2、两圆位置关系的数量特征设两圆半径分别为R和r圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系(图形略)两圆外切 dR+r;两圆内切 dR-r (Rr);两圆外离 dR+r;两圆内含 dR-r(Rr);两圆相交 R-rdR+r(四)应用、练习老师给同学们讲解几道例题,如以下例子:例1: 如图,O的半径为5厘米,点P是O外一点,OP=8厘米求:(1)以P为圆心作P与O外切,小圆P的半径是多少?(2)以P为圆心作P与O内切,大圆P的半径是多少?解:(1)设P与O外切与点A,则PA=PO-OAPA=3cm(2)设P与O内切与点B,则PB=PO+OBPB=1 3cm例2:已知:如图,ABC中,C90,AC12,BC8,以AC为直径作O,以B为圆心,4为半径作圆求证:O与B相外切证明:连结BO,AC为O的直径,AC12,O的半径 ,且O是AC的中点C=90且BC=8,O的半径 ,B的半径 ,BO= ,O与B相外切(五)小结知识:两圆的五种位置关系:外离、外切、相交、内切、内含;以及这五种位置关系下圆心距和两圆半径的数量关系;两圆相切时切点在连心线上的性质能力:观察、分析、分类、数形结合等能力思想方法:分类思想、数形结合思想(六)作业老师根据实际教学情况布置课本后的习题。教学过程教学环节教学内容所用时间教师活动学生活动(一)复习、引出问题直线和圆的几种位置关系及其定义。5分钟1 教师主导复习过程,2 直线和圆有三种位置关系,即直线和圆相离、相切、相交各种位置关系是通过直线与圆的公共点的个数来定义3 引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?学生回忆、回答(二)观察、分类,得出概念关于两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系描述性定义。10分钟1、让学生观察、分析、比较ppt中展示的6幅图,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离(图(1)(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切这个唯一的公共点叫做切点(图(2)(3)相交:两个圆有两个公共点,此时叫做这两个圆相交(图(3)(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切这个唯一的公共点叫做切点(图(4)(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)两圆同心是两圆内含的一个特例 (图(6)2、归纳:(1)两圆外离与内含时,两圆都无公共点(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切)教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交除以上关系外,还有其它关系吗?可能不可能有三个公共点?结论:在同一平面内任意两圆只存在以上五种位置关系学生思考并回答问题。(三)分析、研究1、相切两圆的性质2、两圆位置关系的数量特征15分钟1、相切两圆的性质让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:如果两个圆相切,那么切点一定在连心线上这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明2、两圆位置关系的数量特征设两圆半径分别为R和r圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系 两圆外切 :dR+r;两圆内切 :dR-r (Rr);两圆外离 :dR+r;两圆内含 :dR-r(Rr);两圆相交 :R-rdR+r学生思考并回答问题。(四)应用、练习讲解例题,加深对概念的理解。10分钟老师给同学们讲解几道例题,如以下例子:例1: 如图,O的半径为5厘米,点P是O外一点,OP=8厘米求:(1)以P为圆心作P与O外切,小圆P的半径是多少?(2)以P为圆心作P与O内切,大圆P的半径是多少?解:设P与O外切与点A,则PA=PO-OAPA=3cm(2)设P与O内切与点B,则PB=PO+OBPB=1 3cm例2:已知:如图,ABC中,C90,AC12,BC8,以AC为直径作O,以B为圆心,4为半径作求证:O与B相外切证明:连结BO,AC为O的直径,AC12,O的半径 ,且O是AC的中点C=90且BC=8,O的半径 ,B的半径 ,O与B相外切(五)小结知识:两圆的五种位置关系:外离、外切、相交、内切、内含;以及这五种位置关系下圆心距和两圆半径的数量关系;两圆相切时切点在连心线上的性质能力:观察、分析、分类、数形结合等能力思想方法:分类思想、数形结合思想15分钟由老师在黑板上板书,带领同学们进行小结。(六)作业总结本节教学重、难点,布置作业题5分钟老师根据实际上课情况,有选择地布置教材中的习题课堂教学流程图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年龙岩市供电服务有限公司招聘59人模拟试卷及答案详解(典优)
- 2025辽宁沈阳地铁集团有限公司所属公司拟聘用人员模拟试卷完整答案详解
- 2025年度周口西华县中医院校园招聘17名模拟试卷及参考答案详解
- 2025年河北邯郸市肥乡区公开选聘农村党务(村务)工作者100名模拟试卷有完整答案详解
- 2025江苏苏州市港航投资发展集团有限公司专业化青年人才定岗特选人员考前自测高频考点模拟试题及答案详解(名校卷)
- 2025年4月四川内江市第六人民医院招聘见习人员3人模拟试卷附答案详解(黄金题型)
- 2025年绥化市中医医院招聘考前自测高频考点模拟试题附答案详解
- 2025甘肃交建中油能源有限责任公司加油(气)员招聘13人模拟试卷有完整答案详解
- 2025江苏南京大学医院事业编制和校聘岗位招聘考前自测高频考点模拟试题完整参考答案详解
- 2024-2025年度广东重工建设监理有限公司校园招聘笔试题库历年考点版附带答案详解
- 食品新产品开发 课件 第三章 食品新产品开发配方设计
- 电动起重机司机装卸司机
- DLT817-2014 立式水轮发电机检修技术规程
- 上海西门妇孺医院研究(1884-1952)
- 劳动创造美好生活课件 第二课 璀璨的星空
- 使用林地可行性研究报告
- (样表)有限空间有毒有害气体检测表
- 公司员工考勤表模板竖版
- 模电ppt课件 第1章绪论
- 水处理项目施工组织方案
- 幼儿园红色故事绘本:《闪闪的红星》 课件
评论
0/150
提交评论