2013届江苏高考数学二轮复习突破(三)部分答案.doc_第1页
2013届江苏高考数学二轮复习突破(三)部分答案.doc_第2页
2013届江苏高考数学二轮复习突破(三)部分答案.doc_第3页
2013届江苏高考数学二轮复习突破(三)部分答案.doc_第4页
2013届江苏高考数学二轮复习突破(三)部分答案.doc_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

已知偶函数在区间单调增加,则满足的x 取值范围是已知函数是定义在实数集R上的不恒为零的偶函数,且对任意实数都有,则的值是已知函数满足:x4,则;当x4时,则若函数的零点与的零点之差的绝对值不超过0.25, 则可以是设函数则不等式的解集是( )五位同学围成一圈依序循环报数,规定:第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;若报出的数为3的倍数,则报该数的同学需拍手一次。已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为_.将正ABC分割成(2,nN)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)=2,f(3)=,f(n)= 函数的定义域为R,若与都是奇函数,则( ) w.w.w.k.s.5.u.c.o.m (A) 是偶函数 (B) 是奇函数 (C) (D) 是奇函数已知函数,其中,则此函数在区间上为增函数的概率为 .; 将函数的图象向左平移个单位,得到函数的图象.若在上为增函数,则的最大值为 . ; 对于问题:“已知关于x的不等式ax2+bx+c0的解集为(1,2),解关于x的不等式ax2bx+c0”,给出如下一种解法:解:由ax2+bx+c0的解集为(1,2),得a(x)2+b(x)+c0的解集为(1,2)即关于x的不等式ax2bx+c0的解集为(2,1)参考上述解法,若关于x的不等式的解集为,关于x的不等式的解集为 11.;若等差数列的公差为,前项的和为,则数列为等差数列,公差为类似地,若各项均为正数的等比数列的公比为,前项的积为,则数列为等比数列,公比为 已知集合,设函数()的值域为,若,则实数的取值范围是 在平面直角坐标系中,设直线:与圆:相交于A、B两点,以OA、OB为邻边作平行四边形OAMB,若点M在圆上,则实数k= 0 14若函数()的最大值是正整数,则= 7设数列的通项公式为. 数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值.()若,求;()若,求数列的前2m项和公式;()是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.【解析】本题主要考查数列的概念、数列的基本性质,考查运算能力、推理论证能力、分类讨论等数学思想方法本题是数列与不等式综合的较难层次题.()由题意,得,解,得. 成立的所有n中的最小整数为7,即.()由题意,得,对于正整数,由,得.根据的定义可知当时,;当时,.()假设存在p和q满足条件,由不等式及得.,根据的定义可知,对于任意的正整数m 都有,即对任意的正整数m都成立 当(或)时,得(或),这与上述结论矛盾!当,即时,得,解得. 存在p和q,使得,p和q的取值范围分别是,.对于正整数2,用表示关于的一元二次方程有实数根的有序数组的组数,其中(和可以相等);对于随机选取的(和可以相等),记为关于的一元二次方程有实数根的概率。(1)求和;(2)求证:对任意正整数2,有.【解析】 必做题本小题主要考查概率的基本知识和记数原理,考查探究能力。满分10分。各项均为正数的数列,且对满足的正整数都有1. 当时,(1)证明:数列为等比数列。求通项w. 2. 证明:对任意,存在与有关的常数,使得对于每个正整数,都有【解析】22解:(1)由得将代入化简得w. 所以 w. 故数列为等比数列,从而 即可验证,满足题设条件.(2) 由题设的值仅与有关,记为则 w. 考察函数 ,则在定义域上有w. 故对, 恒成立. w. 又 注意到,解上式得取,即有 . 已知每项均是正整数的数列,其中等于的项有个,设,()设数列,求;()若中最大的项为50, 比较的大小;()若,求函数的最小值解: (I) 因为数列, 所以, 所以 4分 (II) 一方面,根据的含义知, 故,即 , 当且仅当时取等号.因为中最大的项为50,所以当时必有, 所以即当时,有; 当时,有 9分(III)设为中的最大值. 由(II)可以知道,的最小值为. 根据题意, 下面计算的值., , ,最小值为. .14分已知半椭圆和半圆组成曲线,其中;如图,半椭圆内切于矩形,且交轴于点,点是半圆上异于的任意一点,当点位于点时,的面积最大。(1)求曲线的方程;(2) 连、交分别于点,求证:为定值。解:(1)已知点在半圆上,所以,又,所以, (2分)当半圆在点处的切线与直线平行时,点到直线的距离最大,此时的面积取得最大值,故半圆在点处的切线与直线平行,所以,又,所以,又,所以,(4分)所以曲线的方程为或。 (6分)(2)点,点,设,则有直线的方程为,令,得,所以; (9分)直线的方程为,令,得,所以; (12分)则,又由,得,代入上式得,所以为定值。 19解:(1),;当时,即,为等差数列, (2分)。 (4分)(2),(6分)时, (8分)此时,;。 (10分)(3),令,存在,。如图所示的自动通风设施该设施的下部ABCD是等腰梯形,其中AB=1米,高0.5米,CD=2a(a)米上部CmD是个半圆,固定点E为CD的中点EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆(1)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数;CABMNDEmmABCDEMN(第19题)(2)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积解:(1)(一)时,由平面几何知识,得,3分(二) 时,(2) (一)时,当时,当时,(二)时, ,等号成立 时,A时,时当,时,当,12分B时,当时,14分综上,时,当时,即MN与AB之间的距离为0米时,三角通风窗EMN的通风面积最大,最大面积为平方米时,当时, 即与之间的距离为米时,三角通风窗EMN的通风面积最大,最大面积为平方米16分已知点是椭圆的左顶点,直线与椭圆相交于两点,与轴相交于点.且当时,的面积为. ()求椭圆的方程;()设直线,与直线分别交于,两点,试判断以为直径的圆是否经过点?并请说明理由.()当时,直线的方程为,设点在轴上方,由解得,所以.因为的面积为,解得.所以椭圆的方程为. 4分()由得,显然.5分设,则,6分,. 又直线的方程为,由解得,同理得.所以,9分又因为.13分所以,所以以为直径的圆过点. 14分20. (本小题满分13分)将正整数()任意排成行列的数表.对于某一个数表,计算各行和各列中的任意两个数()的比值,称这些比值中的最小值为这个数表的“特征值”.()当时,试写出排成的各个数表中所有可能的不同“特征值”;()若表示某个行列数表中第行第列的数(,),且满足请分别写出时数表的“特征值”,并由此归纳此类数表的“特征值”(不必证明);()对于由正整数排成的行列的任意数表,记其“特征值”为,求证:.(20)(本小题满分13分)证明:()显然,交换任何两行或两列,特征值不变.可设在第一行第一列,考虑与同行或同列的两个数只有三种可能,或或.得到数表的不同特征值是或 3分714582369()当时,数表为此时,数表的“特征值”为 4分13159101426711153481216当时,数表为此时,数表的“特征值”为. 5分21161116172227121318233891419244510152025当时,数表为此时,数表的“特征值”为. 6分猜想“特征值”为. 7分 ()对于一个数表而言,这个较大的数中,要么至少有两个数在一个数表的同一行(或同一列)中,要么这个较大的数在这个数表的不同行且不同列中. 当这个较大的数,至少有两个数在数表的同一行(或同一列)中时,设()为该行(或列)中最大的两个数,则, 因为所以,从而 10分当这个较大的数在这个数表的不同行且不同列中时,当它们中的一个数与在同行(或列)中,设为与在同行、同列中的两个最大数中的较小的一个.则有. 综上可得. 13分已知函数的定义域为,若在上为增函数,则称为“一阶比增函数”;若在上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为. ()已知函数,若且,求实数的取值范围;()已知,且的部分函数值由下表给出, 求证:;()定义集合请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由. 20. (本小题满分14分)解:(I)因为且,即在是增函数,所以 1分而在不是增函数,而当是增函数时,有,所以当不是增函数时,综上,得 4分 () 因为,且 所以,所以,同理可证,三式相加得 所以 6分因为所以而, 所以所以 8分() 因为集合 所以,存在常数,使得 对成立我们先证明对成立假设使得,记因为是二阶比增函数,即是增函数.所以当时,所以 所以一定可以找到一个,使得这与 对成立矛盾 11分对成立,所以,对成立下面我们证明在上无解 假设存在,使得,则因为是二阶增函数,即是增函数一定存在,这与上面证明的结果矛盾 所以在上无解综上,我们得到,对成立所以存在常数,使得,有成立又令,则对成立,又有在上是增函数 ,所以,而任取常数,总可以找到一个,使得时,有所以的最小值 为0 13分定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”()已知是首项为,公差为的等差数列,若是数列的“保三角形函数”,求的取值范围;()已知数列的首项为,是数列的前n项和,且满足,证明是“三角形”数列;()若是()中数列的“保三角形函数”,问数列最多有多少项?(解题中可用以下数据 :)()显然对任意正整数都成立,即是三角形数列。因为,显然有,由得,解得.所以当时,是数列的保三角形函数. 3分()由,得,两式相减得,所以 5分经检验,此通项公式满足.显然,因为,所以是三角形数列. 8分(),所以单调递减.由题意知,且,由得,解得,由得,解得.即数列最多有26项. 13分现有一组互不相同且从小到大排列的数据,其中记,作函数,使其图象为逐点依次连接点的折线()求和的值;()设直线的斜率为,判断的大小关系;()证明:当时,20()解:, 2分; 4分()解:, 6分因为,所以 8分()证:由于的图象是连接各点的折线,要证明,只需证明 9分事实上,当时,下面证明法一:对任何,10分11分 12分所以13分法二:对任何,当时,;10分当时,综上, 如图,设是由个实数组成的行列的数表,其中表示位于第行第列的实数,且.记为所有这样的数表构成的集合对于,记为的第行各数之积,为的第列各数之积令()请写出一个,使得;()是否存在,使得?说明理由;()给定正整数,对于所有的,求的取值集合 ()解:答案不唯一,如图所示数表符合要求 3分()解:不存在,使得 4分 证明如下:假设存在,使得 因为, , 所以,这个数中有个,个 令 一方面,由于这个数中有个,个,从而 另一方面,表示数表中所有元素之积(记这个实数之积为);也表示, 从而 、相矛盾,从而不存在,使得 8分()解:记这个实数之积为 一方面,从“行”的角度看,有; 另一方面,从“列”的角度看,有从而有 10分注意到, 下面考虑,中的个数:由知,上述个实数中,的个数一定为偶数,该偶数记为;则的个数为,所以 12分对数表:,显然将数表中的由变为,得到数表,显然将数表中的由变为,得到数表,显然依此类推,将数表中的由变为,得到数表即数表满足:,其余所以 ,所以由的任意性知,的取值集合为13分 在平面直角坐标系中,定义为两点,之间的“折线距离”. 则 到坐标原点的“折线距离”不超过2的点的集合所构成的平面图形面积是_; 坐标原点与直线上任意一点的“折线距离”的最小值是_.(8, )已知椭圆的对称轴为坐标轴, 离心率为且抛物线的焦点是椭圆的一个焦点()求椭圆的方程;()设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中点P在椭圆上,为坐标原点. 求点到直线的距离的最小值(I)由已知抛物线的焦点为,故设椭圆方程为, 则所以椭圆的方程为5分(II)当直线斜率存在时,设直线方程为,则由 消去得, 6分, 7分设点的坐标分别为,则:,8分 由于点在椭圆上,所以 . 9分 从而,化简得,经检验满足式. 10分 又点到直线的距离为: 11分 当且仅当时等号成立 12分当直线无斜率时,由对称性知,点一定在轴上,从而点的坐标为,直线的方程为,所以点到直线的距离为1 . 所以点到直线的距离最小值为 . 13分已知每项均是正整数的数列,其中等于的项有个,设,()设数列,求;()若中最大的项为50, 比较的大小;()若,求函数的最小值(20)(本小题满分14分)解: (I) 因为数列, 所以, 所以 4分 (II) 一方面,根据的含义知, 故,即 , 当且仅当时取等号.因为中最大的项为50,所以当时必有, 所以即当时,有; 当时,有 9分(III)设为中的最大值. 由(II)可以知道,的最小值为. 根据题意, 下面计算的值., , ,最小值为. .14分在直角三角形中,点是斜边上的一个三等分点,则 (4)14. 将整数填入如图所示的行列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .(45, 85)已知点是椭圆的左顶点,直线与椭圆相交于两点,与轴相交于点.且当时,的面积为. ()求椭圆的方程;()设直线,与直线分别交于,两点,试判断以为直径的圆是否经过点?并请说明理由.()当时,直线的方程为,设点在轴上方,由解得,所以.因为的面积为,解得.所以椭圆的方程为. 4分()由得,显然.5分设,则,6分,. 又直线的方程为,由解得,同理得.所以,9分又因为.13分所以,所以以为直径的圆过点. 14分20. (本小题满分13分)将正整数()任意排成行列的数表.对于某一个数表,计算各行和各列中的任意两个数()的比值,称这些比值中的最小值为这个数表的“特征值”.()当时,试写出排成的各个数表中所有可能的不同“特征值”;()若表示某个行列数表中第行第列的数(,),且满足请分别写出时数表的“特征值”,并由此归纳此类数表的“特征值”(不必证明);()对于由正整数排成的行列的任意数表,记其“特征值”为,求证:.(20)(本小题满分13分)证明:()显然,交换任何两行或两列,特征值不变.可设在第一行第一列,考虑与同行或同列的两个数只有三种可能,或或.得到数表的不同特征值是或 3分714582369()当时,数表为此时,数表的“特征值”为 4分13159101426711153481216当时,数表为此时,数表的“特征值”为. 5分21161116172227121318233891419244510152025当时,数表为此时,数表的“特征值”为. 6分猜想“特征值”为. 7分 ()对于一个数表而言,这个较大的数中,要么至少有两个数在一个数表的同一行(或同一列)中,要么这个较大的数在这个数表的不同行且不同列中. 当这个较大的数,至少有两个数在数表的同一行(或同一列)中时,设()为该行(或列)中最大的两个数,则, 因为所以,从而 10分当这个较大的数在这个数表的不同行且不同列中时,当它们中的一个数与在同行(或列)中,设为与在同行、同列中的两个最大数中的较小的一个.则有. 综上可得. 13分已知函数f(x)=,且,集合A=m|f(m)0 (B) 都有f(m+3)0(C) 使得f(m0+3)=0 (D) 使得f(m0+3)0(A )曲线都是以原点O为对称中心、离心率相等的椭圆点M的坐标是(0,1),线段MN是的短轴,是的长轴.直线与交于A,D两点(A在D的左侧),与交于B,C两点(B在C的左侧)()当m= , 时,求椭圆的方程;()若OBAN,求离心率e的取值范围解:()设C1的方程为,C2的方程为,其中.2分 C1 ,C2的离心率相同,所以,所以,.3分 C2的方程为 当m=时,A,C .5分 又,所以,解得a=2或a=(舍), .6分 C1 ,C2的方程分别为,.7分()A(-,m), B(-,m) 9分 OBAN, , .11分 , 12分 ,.13分椭圆的左右焦点分别为,若椭圆上恰好有6个不同的点,使得为等腰三角形,则椭圆的离心率的取值范围是 A. B. C. D.(D) 已知正方体的棱长为,动点在正方体表面上运动,且(),记点的轨迹的长度为,则_;关于的方程的解的个数可以为_.(填上所有可能的值).已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点.()求抛物线方程及其焦点坐标;()已知为原点,求证:为定值.()将代入,得所以抛物线方程为,焦点坐标为 3分()设,法一:因为直线不经过点,所以直线一定有斜率设直线方程为与抛物线方程联立得到 ,消去,得:则由韦达定理得: 6分直线的方程为:,即,令,得 9分同理可得: 10分又 ,所以13分所以,即为定值 14分法二:设直线方程为与抛物线方程联立得到 ,消去,得:则由韦达定理得:6分直线的方程为:,即,令,得 9分同理可得:10分又 , 12分所以,即为定值 13分20. (本小题满分13分)已知函数的定义域为,若在上为增函数,则称为“一阶比增函数”;若在上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为. ()已知函数,若且,求实数的取值范围;()已知,且的部分函数值由下表给出, 求证:;()定义集合请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由. 20. (本小题满分14分)解:(I)因为且,即在是增函数,所以 1分而在不是增函数,而当是增函数时,有,所以当不是增函数时,综上,得 4分 () 因为,且 所以,所以,同理可证,三式相加得 所以 6分因为所以而, 所以所以 8分() 因为集合 所以,存在常数,使得 对成立我们先证明对成立假设使得,记因为是二阶比增函数,即是增函数.所以当时,所以 所以一定可以找到一个,使得这与 对成立矛盾 11分对成立所以,对成立下面我们证明在上无解 假设存在,使得,则因为是二阶增函数,即是增函数一定存在,这与上面证明的结果矛盾 所以在上无解综上,我们得到,对成立所以存在常数,使得,有成立又令,则对成立,又有在上是增函数 ,所以,而任取常数,总可以找到一个,使得时,有所以的最小值 为0 13分定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”()已知是首项为,公差为的等差数列,若是数列的“保三角形函数”,求的取值范围;()已知数列的首项为,是数列的前n项和,且满足,证明是“三角形”数列;()若是()中数列的“保三角形函数”,问数列最多有多少项?(解题中可用以下数据 :)()显然对任意正整数都成立,即是三角形数列。因为,显然有,由得解得.所以当时,是数列的保三角形函数. 3分()由,得,两式相减得,所以 5分经检验,此通项公式满足.显然,因为,所以是三角形数列. 8分(),所以单调递减.由题意知,且,由得,解得,由得,解得.即数列最多有26项. 13分【注:若有其它解法,请酌情给分】已知椭圆的中心在原点,短半轴的端点到其右焦点的距离为,过焦点F作直线,交椭圆于两点()求这个椭圆的标准方程;()若椭圆上有一点,使四边形恰好为平行四边形,求直线的斜率()由已知,可设椭圆方程为, 1分则 , 2分所以, 3分所以椭圆方程为 4分()若直线轴,则平行四边形AOBC中,点C与点O关于直线对称,此时点C坐标为因为 ,所以点C在椭圆外,所以直线与轴不垂直 6分于是,设直线的方程为,点, 7分则 整理得, 8分, 9分所以 10分因为 四边形为平行四边形,所以 , 11分所以 点的坐标为, 12分所以 , 13分解得,所以14分 1919.(本小题满分13分)已知函数()若函数在处有极值为10,求b的值;()若对于任意的,在上单调递增,求b的最小值解:(), 1分于是,根据题设有 解得 或 3分当时,所以函数有极值点; 4分当时,所以函数无极值点5分所以6分()法一:对任意,都成立,7分所以 对任意,都成立8分因为 ,所以 在上为单调递增函数或为常数函数, 9分所以 对任意都成立 10分即 . 11分又,所以当时,12分所以,所以的最小值为 13分法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论