(精选)理想媒质中的声波方程.ppt_第1页
(精选)理想媒质中的声波方程.ppt_第2页
(精选)理想媒质中的声波方程.ppt_第3页
(精选)理想媒质中的声波方程.ppt_第4页
(精选)理想媒质中的声波方程.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

THREEBASICEQUATIONS 理想媒质中的三个基本方程 1 1 Theequationofmotion 1 theequationofmotion Euler sequation First wewritetherelationbetweensoundpressureandvelocity Considerafluidelement 2 Whenthesoundwavespass thepressureis SotheforceonareaABCDwillbe istheforceofperunitarea TheforceonareaEFGHwillbe ThenetforceexperiencedbythevolumedVinthexdirectionis 3 AccordingtoNewton ssecondlawF ma theaccelerationofsmallvolumeinxdirectionwillbe Forsmallamplitude wecanneglectthesecondordervariableterms 4 When Forsmallamplitude Similarly inthedirectionofyandz wecanobtain 5 Nowletthemotionbethree dimensional sowrite isgradientoperator SinceP0isaconstant andobtain Thisisthelinearinviscidequationofmotion validforacousticprocessesofsmallamplitude 6 2 Theequationofcontinuityrestatementofthelawoftheconservationofmatter Torelatethemotionofthefluidtoitscompressionordilatation weneedafunctionalrelationshipbetweentheparticlevelocityuandtheinstantaneousdensityp 7 Considerasmallrectangular parallelepipedvolumeelementdV dxdydzwhichisfixedinspaceandthroughwhichelementsofthefluidtravel Thenetratewithwhichmassflowsintothevolumethroughitssurfacemustequaltheratewiththemasswithinthevolumeincreases 8 Thatthenetinfluxofmassintothisspatiallyfixedvolume resultingfromflowinthexdirection is Similarexpressionsgivethenetinfluxfortheyandzdirections 9 Sothatthetotalinfluxmustbe Weobtaintheequationofcontinuity 10 Notethattheequationisnonlinear therightterminvolvestheproductofparticlevelocityandinstantaneousdensity bothofwhichareacousticvariables Considerasmallamplitudesoundwave ifwewritep p0 1 s Usethefactthatp0isaconstantinbothspaceandtime andassumethatsisverysmall 11 Weobtain Similarexpressionsgibethenetinfluxfortheyandzdirections 12 Where isthedivergenceoperator 13 3 Theequationofstate WeneedonemorerelationinordertodeterminethethreefunctionsP andu Itisprovidedbytheconditionthatwehaveanadiabatic 绝热的 process thereisinsignificantexchangeofthermalenergyfromoneparticleoffluidtoanother Undertheseconditions itisconvenientlyexpressedbysayingthatthepressurepisuniquelydeterminedasafunctionofthedensity ratherthanadependingseparatelyonboth andT 14 Generallytheadiabaticequationofstateiscomplicated Inthesecasesitispreferabletodetermineexperimentallytheisentropic 等熵 relationshipbetweenpressureanddensityfluctuations WewriteaTaylor sexpansion WhereSisadiabaticprocess thepartialderivativesareconstantsdeterminedforadiabaticcompressionandexpansionofthefluidaboutitsequilibriumdensity 15 Ifthefluctuationsaresmall onlythelowestordertermin Needberetained Thisgivesalinearrelationshipbetweenthepressurefluctuationandthechangeindensity Wesuppose 16 Inthecaseofgasesatsufficientlylowdensity theirbehaviorwillbewellapproximatedbytheidealgaslaw Anadiabaticprocessinanidealgasisgovernedby Hereristheratioofspecificheatatconstantpressuretothatatconstantvolume Air forinstance hasr 1 4atnormalconditions 17 Forideagas Inthesoundfieldofsmallamplitude 18 Speedofsoundinfluids Thisistheequationofstate givestherelationshipbetweenthepressurefluctuationandthechangeindensity Wegetathermodynamicexpressionforthespeedofsound 19 Wherethepartialderivativeisevaluatedatequilibriumconditionsofpressureanddensity Forasoundwavepropagatesthroughaperfectgas thespeedofsoundis Forair at00CandstandardpressureP0 1atm 1 013 105Pa Substitutionoftheappropriatevaluesforairgives 20 Thisisinexcellentagreementwithmeasuredvaluesandtherebysupportsourearlierassumptionthatacousticprocessesinafluidareadiabatic Theoreticalpredictionofthespeedofsoundforliquidsisconsiderablymoredifficultthanforgases Aconvenientexpressionforthespeedofsoundinliquidsis Bsisadiabaticcompressionconstant 21 Thewaveequation Fromtherequirementofconservationofmatterwehaveobtainedtheequationofcontinuity relatingthechangeindensitytothevelocity formthethermodynamiclawswehaveobtainedtheequationofstate relatingthechangeinpressuretothechangeindensity 22 Byusingonemoreequation theequationofmotion thatrelatingthechangeinvelocitytopressure Weshallhaveenoughequationtosolveforallthreequantities 23 Thethreeequationsmustbecombinedtoyieldasingledifferentialequationwithondependentvariable 24 Insmallamplitudesoundfield wecanneglectthesecondordersmallquantity sothat 25 Weobtain Form Equation 3 4 isthelinearized losslesswaveequationforthepropagationofsoundinfluids cisthespeedforacousticwavesinfluids Acousticpressurep x y z t isafunctionofx y z andtimet 26 Where isthethree dimensionalLaplacianoperator Indifferentcoordinatestheoperatortakesondifferentforms Rectangularcoordinates Sphericalcoordinates Cylindricalcoordinates 27 Thevelocitypotentialofsound Fromtheequation 3 1 weget Whererotisrotationoperator 28 Sothevelocitymustbeirrotational 无旋的 Thismeansthatitcanbeexpressedasthegradientofascalar 标量 function 29 where isdefinedasthevelocitypotentialofsound Thephysicalmeaningofthisimportantresultisthattheacousticalexcitationofaninviscidfluidinvolvesnorotationalflow therearenoeffectssuchasboundarylayers shearwaves orturbulence 30 Indifferentcoordinatesittakesondifferentforms Rectangularcoordinates Sphericalcoordinates Cylindricalcoordinates 31 Differentiatingtheequation 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论