已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
寻找最适合自己的学习方法 正弦定理和余弦定理1 正弦定理:2R,其中R是三角形外接圆的半径由正弦定理可以变形:(1)abcsin_Asin_Bsin_C;(2)a2Rsin_A,b2Rsin_B,c2Rsin_C;(3)sin A,sin B,sin C等形式,解决不同的三角形问题2 余弦定理:a2b2c22bccos_A,b2a2c22accos_B,c2a2b22abcos_C余弦定理可以变形:cos A,cos B,cos C.3 SABCabsin Cbcsin Aacsin B(abc)r(r是三角形内切圆的半径),并可由此计算R、r.4 在ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式absin Absin Aab解的个数一解两解一解一解难点正本疑点清源1在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在ABC中,ABabsin Asin B;tanA+tanB+tanC=tanAtanBtanC;在锐角三角形中,cosAsinB,cosAsinC2 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换1 在ABC中,若A60,a,则_.2 (2012福建)已知ABC的三边长成公比为的等比数列,则其最大角的余弦值为_3 (2012重庆)设ABC的内角A,B,C的对边分别为a,b,c,且cos A,cos B,b3,则c_.4 (2011课标全国)在ABC中,B60,AC,则AB2BC的最大值为_5 已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc16,则三角形的面积为()A2 B8 C. D.题型一利用正弦定理解三角形例1在ABC中,a,b,B45.求角A、C和边c. 已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a1,b,AC2B,则角A的大小为_题型二利用余弦定理求解三角形例2在ABC中,a、b、c分别是角A、B、C的对边,且.(1)求角B的大小;(2)若b,ac4,求ABC的面积 已知A,B,C为ABC的三个内角,其所对的边分别为a,b,c,且2cos2cos A0.(1)求角A的值;(2)若a2,bc4,求ABC的面积题型三正弦定理、余弦定理的综合应用例3(2012课标全国)已知a,b,c分别为ABC三个内角A,B,C的对边,acos Casin Cbc0.(1)求A;(2)若a2,ABC的面积为,求b,c.1.在ABC中,内角A,B,C所对的边长分别是a,b,c.(1)若c2,C,且ABC的面积为,求a,b的值;(2)若sin Csin(BA)sin 2A,试判断ABC的形状解(1)c2,C,由余弦定理c2a2b22abcos C得a2b2ab4.又ABC的面积为,absin C,ab4.联立方程组解得a2,b2.(2)由sin Csin(BA)sin 2A,得sin(AB)sin(BA)2sin Acos A,即2sin Bcos A2sin Acos A,cos A(sin Asin B)0,cos A0或sin Asin B0,当cos A0时,0A,A,ABC为直角三角形;当sin Asin B0时,得sin Bsin A,由正弦定理得ab,即ABC为等腰三角形ABC为等腰三角形或直角三角形2.(2011浙江)在ABC中,角A,B,C所对的边分别为a,b,c.已知sin Asin Cpsin B (pR),且acb2.(1)当p,b1时,求a,c的值;(2)若角B为锐角,求p的取值范围解(1)由题设并由正弦定理,得解得或(2)由余弦定理,b2a2c22accos B(ac)22ac2accos Bp2b2b2b2cos B,即p2cos B.因为0cos B0,所以pb,A60或A120.当A60时,C180456075,c;当A120时,C1804512015,c.变式训练1例2解(1)由余弦定理知:cos B,cos C.将上式代入得:,整理得:a2c2b2ac.cos B.B为三角形的内角,B.(2)将b,ac4,B代入b2a2c22accos B,得b2(ac)22ac2accos B,13162ac,ac3.SABCacsin B.变式训练2解(1)cos ,cos A2cos21,sin A.又3,bccos A3,bc5.SABCbcsin A52.(2)由(1)知,bc5,又bc6,根据余弦定理得a2b2c22bccos A(bc)22bc2bccos A36101020,a2.例3解(1)由题设并由正弦定理,得解得或(2)由余弦定理,b2a2c22accos B(ac)22ac2accos Bp2b2b2b2cos B,即p2cos B.因为0cos B0,所以p.变式训练3解(1)c2,C,由余弦定理c2a2b22abcos C得a2b2ab4.又ABC的面积为,absin C,ab4.联立方程组解得a2,b2.(2)由sin Csin(BA)sin 2A,得sin(AB)sin(BA)2sin Acos A,即2sin Bcos A2sin Acos A,cos A(sin Asin B)0,cos A0或sin Asin B0,当cos A0时,0A0,从而有sin A,A60或120,A是锐角,A60.(2)10bcsin 60,bc40,又72b2c22bccos 60,b2c289.8解sin B4cos Asin C,由正弦定理,得4cos A,b4ccos A,由余弦定理得b4c,b22(b2c2a2),b22(b22b),b4.B组1D2.D3A460正三角形 546.7解(1)由已知,根据正弦定理得2a2(2bc)b(2cb)c,即a2b2c2bc.由余弦定理得a2b2c22bccos A,故cos A,又0A180,A120.(2)由得sin2Asin2Bsin2Csin Bsin C.(sin Bsin C)2sin Bsin C,又sin Bsin C1,sin Bsin C.解联立的方程组,得sin Bsin C.因为0B60,0C60,故BC.所以ABC是等腰的钝角三角形8解(1)BCA,即,由4sin2cos 2A,得4cos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养羊租地合同协议书
- 核酸转运协议书范本
- 医务人员聘任协议书
- 医疗整形医患协议书
- 山东滨州高新技术产业开发区2025年下半年招考雇员制工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 山东五莲县2025年下半年招考事业单位专业技术人员易考易错模拟试题(共500题)试卷后附参考答案
- 安徽池州市园林局2025年下半年招考1名专业技术人员易考易错模拟试题(共500题)试卷后附参考答案
- 农业种植生产协议书
- 医用无纺布合同范本
- 村居共建协议书范本
- 宠物直播带货案例分析-洞察及研究
- 江西铜业校招笔试题及答案
- 2025国际贸易合同协议书标准版范本
- 2025宁夏建设投资集团有限公司招聘60人笔试历年典型考点题库附带答案详解试卷2套
- 2025年《治安管理处罚法》多项选择题题库及答案
- 全国大学生职业规划大赛《网络直播与运营》专业生涯发展展示【高职(专科)】
- 试验员安全综合能力考核试卷含答案
- GB/T 18711-2025选煤用磁铁矿粉试验方法
- 2025年国考国家能源局无领导小组讨论资源分配类题目实战
- 2025秋季石油工业出版社有限公司高校毕业生招聘考试参考试题及答案解析
- 中国对外贸易中心集团笔试题库
评论
0/150
提交评论