




已阅读5页,还剩258页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
QSM754SIXSIGMAAPPLICATIONSAGENDA Day1Agenda WelcomeandIntroductionsCourseStructureMeetingGuidelines CourseAgenda ReportOutCriteriaGroupExpectationsIntroductiontoSixSigmaApplicationsRedBeadExperimentIntroductiontoProbabilityDistributionsCommonProbabilityDistributionsandTheirUsesCorrelationAnalysis Day2Agenda TeamReportOutsonDay1MaterialCentralLimitTheoremProcessCapabilityMulti VariAnalysisSampleSizeConsiderations Day3Agenda TeamReportOutsonDay2MaterialConfidenceIntervalsControlChartsHypothesisTestingANOVA AnalysisofVariation ContingencyTables Day4Agenda TeamReportOutsonPracticumApplicationDesignofExperimentsWrapUp PositivesandDeltas ClassGuidelines Q AaswegoBreaksHourlyHomeworkReadingsAsassignedinSyllabusGradingClassPreparation30 TeamClassroomExercises30 TeamPresentations40 10MinuteDailyPresentation Day2and3 onApplicationofpreviousdayswork20minutefinalPracticumapplication Lastday CopyonFloppyaswellashardcopyPowerpointpreferredRotatePresentersQ Afromtheclass INTRODUCTIONTOSIXSIGMAAPPLICATIONS LearningObjectives Haveabroadunderstandingofstatisticalconceptsandtools Understandhowstatisticalconceptscanbeusedtoimprovebusinessprocesses Understandtherelationshipbetweenthecurriculumandthefourstepsixsigmaproblemsolvingprocess Measure Analyze ImproveandControl WhatisSixSigma APhilosophy AQualityLevel AStructuredProblem SolvingApproach AProgram POSITIONINGSIXSIGMATHEFRUITOFSIXSIGMA UNLOCKINGTHEHIDDENFACTORY CommonSixSigmaProjectAreas ManufacturingDefectReductionCycleTimeReductionCostReductionInventoryReductionProductDevelopmentandIntroductionLaborReductionIncreasedUtilizationofResourcesProductSalesImprovementCapacityImprovementsDeliveryImprovements TheFocusofSixSigma INSPECTIONEXERCISE Thenecessityoftrainingfarmhandsforfirstclassfarmsinthefatherlyhandlingoffarmlivestockisforemostinthemindsoffarmowners Sincetheforefathersofthefarmownerstrainedthefarmhandsforfirstclassfarmsinthefatherlyhandlingoffarmlivestock thefarmownersfeeltheyshouldcarryonwiththefamilytraditionoftrainingfarmhandsoffirstclassfarmsinthefatherlyhandlingoffarmlivestockbecausetheybelieveitisthebasisofgoodfundamentalfarmmanagement Howmanyf scanyouidentifyin1minuteofinspection INSPECTIONEXERCISE Thenecessityof trainingf armhandsf orf irstclassf armsinthef atherlyhandlingof f armlivestockisf oremostinthemindsof f armowners Sincethef oref athersof thef armownerstrainedthef armhandsf orf irstclassf armsinthef atherlyhandlingof f armlivestock thef armownersf eeltheyshouldcarryonwiththef amilytraditionof trainingf armhandsof f irstclassf armsinthef atherlyhandlingof f armlivestockbecausetheybelieveitisthebasisof goodf undamentalf armmanagement Howmanyf scanyouidentifyin1minuteofinspection 36totalareavailable SIXSIGMACOMPARISON IMPROVEMENTROADMAP Measurementsarecritical Ifwecan taccuratelymeasuresomething wereallydon tknowmuchaboutit Ifwedon tknowmuchaboutit wecan tcontrolit Ifwecan tcontrolit weareatthemercyofchance WHYSTATISTICS THEROLEOFSTATISTICSINSIXSIGMA WEDON TKNOWWHATWEDON TKNOWIFWEDON THAVEDATA WEDON TKNOWIFWEDON TKNOW WECANNOTACTIFWECANNOTACT THERISKISHIGHIFWEDOKNOWANDACT THERISKISMANAGEDIFWEDOKNOWANDDONOTACT WEDESERVETHELOSS DR MikelJ HarryTOGETDATAWEMUSTMEASUREDATAMUSTBECONVERTEDTOINFORMATIONINFORMATIONISDERIVEDFROMDATATHROUGHSTATISTICS WHYSTATISTICS THEROLEOFSTATISTICSINSIXSIGMA Ignoranceisnotbliss itisthefoodoffailureandthebreedinggroundforloss DR MikelJ Harry Yearsagoastatisticianmighthaveclaimedthatstatisticsdealtwiththeprocessingofdata Today sstatisticianwillbemorelikelytosaythatstatisticsisconcernedwithdecisionmakinginthefaceofuncertainty Bartlett SalesReceiptsOnTimeDeliveryProcessCapacityOrderFulfillmentTimeReductionofWasteProductDevelopmentTimeProcessYieldsScrapReductionInventoryReductionFloorSpaceUtilization WHATDOESITMEAN RandomChanceorCertainty Whichwouldyouchoose LearningObjectives Haveabroadunderstandingofstatisticalconceptsandtools Understandhowstatisticalconceptscanbeusedtoimprovebusinessprocesses Understandtherelationshipbetweenthecurriculumandthefourstepsixsigmaproblemsolvingprocess Measure Analyze ImproveandControl REDBEADEXPERIMENT LearningObjectives Haveanunderstandingofthedifferencebetweenrandomvariationandastatisticallysignificantevent Understandthedifferencebetweenattemptingtomanageanoutcome Y asopposedtomanagingupstreameffects x s Understandhowtheconceptofstatisticalsignificancecanbeusedtoimprovebusinessprocesses WELCOMETOTHEWHITEBEADFACTORY HIRINGNEEDSBEADSAREOURBUSINESSPRODUCTIONSUPERVISOR4PRODUCTIONWORKERS2INSPECTORS1INSPECTIONSUPERVISOR1TALLYKEEPER STANDINGORDERS Followtheprocessexactly Donotimproviseorvaryfromthedocumentedprocess Yourperformancewillbebasedsolelyonyourabilitytoproducewhitebeads Noquestionswillbeallowedaftertheinitialtrainingperiod Yourdefectquotaisnomorethan5offcolorbeadsallowedperpaddle WHITEBEADMANUFACTURINGPROCESSPROCEDURES Theoperatorwilltakethebeadpaddleintherighthand Insertthebeadpaddleata45degreeangleintothebeadbowl Agitatethebeadpaddlegentlyinthebeadbowluntilallspacesarefilled Gentlywithdrawthebeadpaddlefromthebowlata45degreeangleandallowthefreebeadstorunoff Withouttouchingthebeads showthepaddletoinspector 1andwaituntiltheoffcolorbeadsaretallied Movetoinspector 2andwaituntiltheoffcolorbeadsaretallied Inspector 1and 2showtheirtalliestotheinspectionsupervisor Iftheyagree theinspectionsupervisorannouncesthecountandthetallykeeperwillrecordtheresult Iftheydonotagree theinspectionsupervisorwilldirecttheinspectorstorecountthepaddle Whenthecountiscomplete theoperatorwillreturnallthebeadstothebowlandhandthepaddletothenextoperator INCENTIVEPROGRAM Lowbeadcountswillberewardedwithabonus Highbeadcountswillbepunishedwithareprimand Yourperformancewillbebasedsolelyonyourabilitytoproducewhitebeads Yourdefectquotaisnomorethan7offcolorbeadsallowedperpaddle PLANTRESTRUCTURE Defectcountsremaintoohighfortheplanttobeprofitable Thetwobestperformingproductionworkerswillberetainedandthetwoworstperformingproductionworkerswillbelaidoff Yourperformancewillbebasedsolelyonyourabilitytoproducewhitebeads Yourdefectquotaisnomorethan10offcolorbeadsallowedperpaddle OBSERVATIONS WHATOBSERVATIONSDIDYOUMAKEABOUTTHISPROCESS TheFocusofSixSigma Y f x Allcriticalcharacteristics Y aredrivenbyfactors x whichare downstream fromtheresults Attemptingtomanageresults Y onlycausesincreasedcostsduetorework testandinspection Understandingandcontrollingthecausativefactors x istherealkeytohighqualityatlowcost LearningObjectives Haveanunderstandingofthedifferencebetweenrandomvariationandastatisticallysignificantevent Understandthedifferencebetweenattemptingtomanageanoutcome Y asopposedtomanagingupstreameffects x s Understandhowtheconceptofstatisticalsignificancecanbeusedtoimprovebusinessprocesses INTRODUCTIONTOPROBABILITYDISTRIBUTIONS LearningObjectives Haveabroadunderstandingofwhatprobabilitydistributionsareandwhytheyareimportant Understandtherolethatprobabilitydistributionsplayindeterminingwhetheraneventisarandomoccurrenceorsignificantlydifferent Understandthecommonmeasuresusedtocharacterizeapopulationcentraltendencyanddispersion UnderstandtheconceptofShift Drift Understandtheconceptofsignificancetesting WhydoweCare AnunderstandingofProbabilityDistributionsisnecessaryto Understandtheconceptanduseofstatisticaltools Understandthesignificanceofrandomvariationineverydaymeasures Understandtheimpactofsignificanceonthesuccessfulresolutionofaproject IMPROVEMENTROADMAPUsesofProbabilityDistributions Establishbaselinedatacharacteristics ProjectUses Identifyandisolatesourcesofvariation Usetheconceptofshift drifttoestablishprojectexpectations Demonstratebeforeandafterresultsarenotrandomchance KEYSTOSUCCESS Measurementsarecritical Ifwecan taccuratelymeasuresomething wereallydon tknowmuchaboutit Ifwedon tknowmuchaboutit wecan tcontrolit Ifwecan tcontrolit weareatthemercyofchance TypesofMeasures Measureswherethemetriciscomposedofaclassificationinoneoftwo ormore categoriesiscalledAttributedata Thisdataisusuallypresentedasa count or percent Good BadYes NoHit Missetc MeasureswherethemetricconsistsofanumberwhichindicatesaprecisevalueiscalledVariabledata TimeMiles Hr COINTOSSEXAMPLE Takeacoinfromyourpocketandtossit200times Keeptrackofthenumberoftimesthecoinfallsas heads Whencomplete theinstructorwillaskyouforyour head count COINTOSSEXAMPLE COINTOSSPROBABILITYEXAMPLE COINTOSSEXAMPLE Wecannowequateaprobabilitytotheoccurrenceofspecificvaluesorgroupsofvalues Forexample wecanseethattheoccurrenceofa Headcount oflessthan74orgreaterthan124outof200tossesissorarethatasingleoccurrencewasnotregisteredoutof10 000tries Ontheotherhand wecanseethatthechanceofgettingacountnear orat 100ismuchhigher Withthedatathatwenowhave wecanactuallypredicteachofthesevalues COINTOSSPROBABILITYDISTRIBUTION CommonOccurrenceRareEvent WHATDOESITMEAN Whatarethechancesthatthis justhappened Iftheyaresmall chancesarethatanexternalinfluenceisatworkthatcanbeusedtoourbenefit ProbabilityandStatistics theoddsofColoradoUniversitywinningthenationaltitleare3to1 DrewBledsoe spasscompletionpercentageforthelast6gamesis 58 versus 78 forthefirst5games TheSenatorwillwintheelectionwith54 ofthepopularvotewithamarginof 3 ProbabilityandStatisticsinfluenceourlivesdailyStatisticsistheuniversallanuageforscienceStatisticsistheartofcollecting classifying presenting interpretingandanalyzingnumericaldata aswellasmakingconclusionsaboutthesystemfromwhichthedatawasobtained PopulationVs Sample CertaintyVs Uncertainty DescriptiveStatistics DescriptiveStatisticsisthebranchofstatisticswhichmostpeoplearefamiliar Itcharacterizesandsummarizesthemostprominentfeaturesofagivensetofdata means medians standarddeviations percentiles graphs tablesandcharts DescriptiveStatisticsdescribetheelementsofapopulationasawholeortodescribedatathatrepresentjustasampleofelementsfromtheentirepopulation InferentialStatistics InferentialStatisticsisthebranchofstatisticsthatdealswithdrawingconclusionsaboutapopulationbasedoninformationobtainedfromasampledrawnfromthatpopulation Whiledescriptivestatisticshasbeentaughtforcenturies inferentialstatisticsisarelativelynewphenomenonhavingitsrootsinthe20thcentury We infer somethingaboutapopulationwhenonlyinformationfromasampleisknown ProbabilityisthelinkbetweenDescriptiveandInferentialStatistics WHATDOESITMEAN NUMBEROFHEADS SIGMAVALUE Z CUM OFPOPULATION Andthefirst50trialsshowed HeadCounts greaterthan130 WHATIFWEMADEACHANGETOTHEPROCESS Chancesareverygoodthattheprocessdistributionhaschanged Infact thereisaprobabilitygreaterthan99 999 thatithaschanged USESOFPROBABILITYDISTRIBUTIONS Primarilythesedistributionsareusedtotestforsignificantdifferencesindatasets Tobeclassifiedassignificant theactualmeasuredvaluemustexceedacriticalvalue Thecriticalvalueistabularvaluedeterminedbytheprobabilitydistributionandtheriskoferror Thisriskoferroriscalledariskandindicatestheprobabilityofthisvalueoccurringnaturally So anariskof 05 5 meansthatthiscriticalvaluewillbeexceededbyarandomoccurrencelessthan5 ofthetime SOWHATMAKESADISTRIBUTIONUNIQUE CENTRALTENDENCYWhereapopulationislocated DISPERSIONHowwideapopulationisspread DISTRIBUTIONFUNCTIONThemathematicalformulathatbestdescribesthedata wewillcoverthisindetailinthenextmodule COINTOSSCENTRALTENDENCY Whataresomeofthewaysthatwecaneasilyindicatethecenteringcharacteristicofthepopulation Threemeasureshavehistoricallybeenused themean themedianandthemode WHATISTHEMEAN WHATISTHEMEDIAN WHATISTHEMODE MEASURESOFCENTRALTENDENCY SUMMARY SOWHAT STHEREALDIFFERENCE SOWHAT STHEBOTTOMLINE COINTOSSPOPULATIONDISPERSION WHATISTHERANGE WHATISTHEVARIANCE STANDARDDEVIATION MEASURESOFDISPERSION SAMPLEMEANANDVARIANCEEXAMPLE SOWHAT STHEREALDIFFERENCE SOWHAT STHEBOTTOMLINE SOWHATISTHISSHIFT DRIFTSTUFF SOWHATHAPPENED VARIATIONFAMILIES SOWHATDOESITMEAN Tocompensatefortheselongtermvariations wemustconsidertwosetsofmetrics Shorttermmetricsarethosewhichtypicallyareassociatedwithourwork Longtermmetricstaketheshorttermmetricdataanddegradeitbyanaverageof1 5s IMPACTOF1 5sSHIFTANDDRIFT SHIFTANDDRIFTEXERCISE Wehavejustcompletedaprojectandhavepresentedthefollowingshorttermmetrics Zst 3 5PPMst 233Cpkst 1 2 Calculatethelongtermvaluesforeachofthesemetrics LearningObjectives Haveabroadunderstandingofwhatprobabilitydistributionsareandwhytheyareimportant Understandtherolethatprobabilitydistributionsplayindeterminingwhetheraneventisarandomoccurrenceorsignificantlydifferent Understandthecommonmeasuresusedtocharacterizeapopulationcentraltendencyanddispersion UnderstandtheconceptofShift Drift Understandtheconceptofsignificancetesting COMMONPROBABILITYDISTRIBUTIONSANDTHEIRUSES LearningObjectives Haveabroadunderstandingofhowprobabilitydistributionsareusedinimprovementprojects Reviewtheoriginanduseofcommonprobabilitydistributions WhydoweCare Probabilitydistributionsarenecessaryto determinewhetheraneventissignificantorduetorandomchance predicttheprobabilityofspecificperformancegivenhistoricalcharacteristics IMPROVEMENTROADMAPUsesofProbabilityDistributions KEYSTOSUCCESS PROBABILITYDISTRIBUTIONS WHEREDOTHEYCOMEFROM COMMONPROBABILITYDISTRIBUTIONS THELANGUAGEOFMATH PopulationandSampleSymbology THREEPROBABILITYDISTRIBUTIONS ZTRANSFORM TheFocusofSixSigma Y f x Allcriticalcharacteristics Y aredrivenbyfactors x whichare downstream fromtheresults Attemptingtomanageresults Y onlycausesincreasedcostsduetorework testandinspection Understandingandcontrollingthecausativefactors x istherealkeytohighqualityatlowcost Probabilitydistributionsidentifysourcesofcausativefactors x Thesecanbeidentifiedandverifiedbytestingwhichshowstheirsignificanteffectsagainstthebackdropofrandomnoise BUTWHATDISTRIBUTIONSHOULDIUSE HOWDOPOPULATIONSINTERACT Theseinteractionsformanewpopulationwhichcannowbeusedtopredictfutureperformance HOWDOPOPULATIONSINTERACT ADDINGTWOPOPULATIONS HOWDOPOPULATIONSINTERACT SUBTRACTINGTWOPOPULATIONS TRANSACTIONALEXAMPLE Ordersarecominginwiththefollowingcharacteristics Shipmentsaregoingoutwiththefollowingcharacteristics Assumingnothingchanges whatpercentofthetimewillshipmentsexceedorders TRANSACTIONALEXAMPLE TRANSACTIONALEXAMPLE CONTINUED MANUFACTURINGEXAMPLE 2Blocksarebeingassembledendtoendandsignificantvariationhasbeenfoundintheoverallassemblylength Theblockshavethefollowingdimensions Determinetheoverallassemblylengthandstandarddeviation LearningObjectives Haveabroadunderstandingofhowprobabilitydistributionsareusedinimprovementprojects Reviewtheoriginanduseofcommonprobabilitydistributions CORRELATIONANALYSIS LearningObjectives Understandhowcorrelationcanbeusedtodemonstratearelationshipbetweentwofactors Knowhowtoperformacorrelationanalysisandcalculatethecoefficientoflinearcorrelation r Understandhowacorrelationanalysiscanbeusedinanimprovementproject WhydoweCare CorrelationAnalysisisnecessaryto showarelationshipbetweentwovariables Thisalsosetsthestageforpotentialcauseandeffect IMPROVEMENTROADMAPUsesofCorrelationAnalysis Determineandquantifytherelationshipbetweenfactors x andoutputcharacteristics Y CommonUses KEYSTOSUCCESS WHATISCORRELATION Ameasurablerelationshipbetweentwovariabledatacharacteristics NotnecessarilyCause Effect Y f x Correlationrequirespaireddatasets ie Y1 x1 Y2 x2 etc Theinputvariableiscalledtheindependentvariable xorKPIV sinceitisindependentofanyotherconstraintsTheoutputvariableiscalledthedependentvariable YorKPOV sinceitis theoretically dependentonthevalueofx Thecoefficientoflinearcorrelation r isthemeasureofthestrengthoftherelationship Thesquareof r isthepercentoftheresponse Y whichisrelatedtotheinput x WHATISCORRELATION TYPESOFCORRELATION CALCULATING r CoefficientofLinearCorrelation APPROXIMATING r CoefficientofLinearCorrelation HOWDOIKNOWWHENIHAVECORRELATION Theanswershouldstrikeafamiliarcordatthispoint Wehaveconfidence 95 thatwehavecorrelationwhen rCALC rCRIT SincesamplesizeisakeydeterminateofrCRITweneedtouseatabletodeterminethecorrectrCRITgiventhenumberoforderedpairswhichcomprisethecompletedataset So intheprecedingexamplewehad60orderedpairsofdataandwecomputedarCALCof 47 UsingthetableattheleftwedeterminethattherCRITvaluefor60is 26 Comparing rCALC rCRITweget 47 26 Thereforethecalculatedvalueexceedstheminimumcriticalvaluerequiredforsignificance Conclusion Weare95 confidentthattheobservedcorrelationissignificant LearningObjectives Understandhowcorrelationcanbeusedtodemonstratearelationshipbetweentwofactors Knowhowtoperformacorrelationanalysisandcalculatethecoefficientoflinearcorrelation r Understandhowacorrelationanalysiscanbeusedinablackbeltstory CENTRALLIMITTHEOREM LearningObjectives UnderstandtheconceptoftheCentralLimitTheorem UnderstandtheapplicationoftheCentralLimitTheoremtoincreasetheaccuracyofmeasurements WhydoweCare TheCentralLimitTheoremis thekeytheoreticallinkbetweenthenormaldistributionandsamplingdistributions themeansbywhichalmostanysamplingdistribution nomatterhowirregular canbeapproximatedbyanormaldistributionifthesamplesizeislargeenough IMPROVEMENTROADMAPUsesoftheCentralLimitTheorem CommonUses KEYSTOSUCCESS WHATISTHECENTRALLIMITTHEOREM CentralLimitTheoremForalmostallpopulations thesamplingdistributionofthemeancanbeapproximatedcloselybyanormaldistribution providedthesamplesizeissufficientlylarge WhydoweCare HOWDOESTHISWORK Asyouaveragealargerandlargernumberofsamples youcanseehowtheoriginalsampledpopulationistransformed ANOTHERPRACTICALASPECT DICEEXERCISE Breakinto3teamsTeamonewillbeusing2diceTeamtwowillbeusing4diceTeamthreewillbeusing6diceEachteamwillconduct100throwsoftheirdiceandrecordtheaverageofeachthrow Plotahistogramoftheresultingdata Eachteampresentstheresultsina10minreportout LearningObjectives UnderstandtheconceptoftheCentralLimitTheorem UnderstandtheapplicationoftheCentralLimitTheoremtoincreasetheaccuracyofmeasurements PROCESSCAPABILITYANALYSIS LearningObjectives Understandtherolethatprocesscapabilityanalysisplaysinthesuccessfulcompletionofanimprovementproject Knowhowtoperformaprocesscapabilityanalysis WhydoweCare ProcessCapabilityAnalysisisnecessaryto determinetheareaoffocuswhichwillensuresuccessfulresolutionoftheproject benchmarkaprocesstoenabledemonstratedlevelsofimprovementaftersuccessfulresolutionoftheproject demonstrateimprovementaftersuccessfulresolutionoftheproject
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中学出入管理制度
- 中学团员管理制度
- 中学科研管理制度
- 中心会议管理制度
- 中班午睡管理制度
- 中职寝室管理制度
- 中药留样管理制度
- 中药贵细管理制度
- 中试场地管理制度
- 临床样品管理制度
- 河北省2025年高二年级第二学期期末模拟检测数学试题(含答案)
- 党课课件含讲稿:“违规吃喝”专题解读
- 2025年山东文旅集团科技发展公司招聘考试笔试试题
- 逻辑学七道试题及答案
- 2025年中国高压水除鳞系统行业市场现状及未来发展前景预测分析报告
- 2025甘肃省农垦集团有限责任公司招聘生产技术人员145人笔试参考题库附带答案详解析
- 积分落户劳动合同协议
- 辽宁沈阳副食集团所属企业招聘笔试题库2025
- 2024-2025湘美版六年级下册美术期末考试卷及答案
- AI助力市场营销自动化及优化策略研究
- 2025年湖北省中考生物模拟试题七
评论
0/150
提交评论