




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形的判定教学设计教学目的:使学生能够掌握三个公理一个定理来判定两个三角形全等。教学重点:三个公理及一个定理的应用教学难点:判定方法的应用教学过程:复习:1. 全等三角形有什么性质2. 全等三角形的判定方法除定义以外,还有哪些判定方法。判定三角形全等的方法总结在一个三角形的三条边,三个角中任取三个元素,可以有下列组合;SAS、SSA、ASA、AAS、SSS、AAA,但其中SSA和AAA不能判定三角形全等。3. 如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等。(2)可以从已知条件出发,看已知条件确定哪两个三角形可证它的全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,可采用添加辅助线的方法,构造三角形全等。【例题解析】例1. 已知:如图所示,AB=AC,求证:证明:证明两个三角形全等时要特别注意证明的正确书写格式,同时要注意证题时做到步步有根据,书写时应把对应顶点写在对应位置上。例2. 如图所示,已知:AF=AE,AC=AD,CF与DE交于点B。求证:。分析:要用“SAS”公理证两个三角形全等,条件只缺AF与AC的夹角、AE与AD的夹角相等,观察图形可知正好是待证全等的两个三角形的公共角,并且是AF与AC的夹角,AE与AD的夹角。证明:在ACF和ADE中,例3. 如图(1)所示,AC=BD,AB=DC,求证:。图(1)分析1:要证,可以观察与所在的ABE与DCE是否全等。由已知判定条件不足,若将及已知AC、BD放在同一对三角形中问题可获解决,这一对三角形是:ABD与DCA。故要连结AD,再证。证法1:连结AD(如图(2)所示)图(2)在ABD和DCA中分析2:分析本题条件AB、AC在ABC中,DC、BD在DCB中,而AC=BD,AB=DC,故可连结BC,证,再运用角的和差证。证法2:连结BC在证明:(1)本题第1种分析方法是从条件出发结合已知得到应构造,辅助线是连结AD;第2种分析方法是从已知条件入手,发现条件集中在两个三角形ABC及DCB。连结BC,证,这两种分析方法在今后证题中经常运用。例4. 如图所示,垂足分别为D、E,BE与CD相交于点O,且,求证:BD=CE。分析:要证BD=CE,可证,或证AB=AC,AD=AE即可。证明:在BOD和COE中,说明:本题证得能得到AD=AE,可进一步证明得AB=AC,故,即BD=CE,事实上,本题ADO与AEO,ABO与ACO,BDO与CEO中,有一对三角形全等可推得其余两对三角形全等。【模拟试题】(答题时间:30分钟)1. 三个角对应相等的两个三角形全等。( )2. 三条边对应相等的两个三角形全等。( )3. 两条直角边对应相等的两个直角三角形全等。( )4. 腰长相等且有一个角是30的两个等腰三角形全等。( )5. 腰长相等且有一个角是120的两个等腰三角形全等。6. 有两条边长分别是2cm和3cm,且一个角是40的两个三角形全等。7. 有一边对应相等的两个等边三角形全等。( )8. 如果,D”在B”C”上,且BD=B”D”,那么一定有AD=A”D”。( )9. 如果,D在BC上,D”在B”C”上,且,那么一定有。( )10. 有一边重合,其余两边对应平行的两个三角形全等。( )11. 下列命题中,真命题是( )A. 面积相等的两个三角形是全等三角形B. 有两边及其中一边的对角对应相等的两个三角形全等C. 全等三角形的周长相等D. 有一条直角边对应相等的两个三角形全等12. 在ABC和A”B”C”中,(1)AB=A”B”,(2)BC=B”C”,(3)AC=A”C”,(4),(5),(6),则下列条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国家电网招聘考试自我提分评估附答案详解【满分必刷】
- 2024-2025学年度法律职业资格考试全真模拟模拟题及参考答案详解(巩固)
- 教师招聘之《中学教师招聘》综合提升练习试题含完整答案详解(典优)
- 2024年广播电视编辑记者考试综合练习(夺分金卷)附答案详解
- 2025年海城市面向应届毕业生招聘医疗岗位高层次急需紧缺人才模拟试卷带答案详解(完整版)
- 建筑防腐保温工程施工后期质量跟踪
- 公共交通车站设施建设方案
- 道路规划与交通流量优化方案
- 给水项目施工进度调整方案
- 2025年兰州交通大学招聘事业编制工作人员(16人)模拟试卷及答案详解(典优)
- 危重症患者护理文书书写规范-课件
- 高中心理健康课程《人际关系-寝室篇》课件
- 水产微生物学
- 电力系统继电保护课程设计报告-三段式距离保护
- 香港永久性居民在内地所生中国籍子女赴香港定居申请表
- 部编人教版五年级上册小学道德与法治 第5课 协商决定班级事务 课件
- 跨境电商亚马逊运营实务完整版ppt课件-整套课件-最全教学教程
- GB∕T 31038-2014 高电压柴油发电机组通用技术条件
- 基层工会经费财务规范化建设
- 亚硒酸 MSDS危险化学品安全技术说明书
- 预防接种家长课堂(课堂PPT)
评论
0/150
提交评论