电子陶瓷材料PPT课件.ppt_第1页
电子陶瓷材料PPT课件.ppt_第2页
电子陶瓷材料PPT课件.ppt_第3页
电子陶瓷材料PPT课件.ppt_第4页
电子陶瓷材料PPT课件.ppt_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电子陶瓷材料 2020 3 20 1 第二章陶瓷的晶体缺陷 一 决定陶瓷性能的结构因素 2020 3 20 2 LTCC基板优点 缺陷的分类 2020 3 20 3 点缺陷的标记法 Kroger VinkNotation 2020 3 20 4 缺陷种类与有效电荷 2020 3 20 5 二 晶体缺陷的研究 1 结晶学观点出发 研究缺陷存在的形态2 热力学立场出发 研究缺陷生成的理论依据 2020 3 20 6 LDK玻璃技术指标 准化学平衡法 原理 将缺陷生成看作是一种化学反应缺陷反应方程式的规则 1 质量关系 原子数平衡 方程两边各种原子 或离子 的个数必须相等 2 位置关系 格点数成正确比例 每增加a个M格点 须增加b个X格点 3 电荷关系 电荷平衡 方程两边的总有效电荷必须相同 晶体的电中性 2020 3 20 7 缺陷反应方程式应用示例 具有Frankel缺陷的化学计量化合物M 2X 2 具有反Frankel缺陷的化学计量化合物M 2X 2 具有Schottky缺陷的化学计量化合物M 2X 2 无缺陷 2020 3 20 8 缺陷反应方程式应用示例 具有反Schottky缺陷的化学计量化合物M 2X 2 正离子缺位的非化学计量化合物M1 yX Ni1 yO Cu2 yO Mn1 yO等 如果缺陷反应充分 则有 2020 3 20 9 2020 3 20 10 非化学计量比化合物MX1 y 负离子缺位 如TiO2 y WO2 y等 若缺陷反应充分 则有 如BaTiO3在还原性气氛条件下烧结 e 为多子 n型半导体 2020 3 20 11 正离子填隙非化学计量化合物M1 yX充分反应如 Zn1 yO在一定条件下以Zni 缺陷为主时 呈n型半导体 2020 3 20 12 负离子填隙非化学计量化合物MX1 y充分反应如VO1 y UO2 y在一定条件下 氧过量缺陷为主 呈p型半导体 电子与空穴复合 2020 3 20 13 三 用质量作用定律表述缺陷浓度 质量作用定律 在一定温度下 化学反应达到平衡时 正反两方面参加反应的组元浓度乘积之比保持为常数 如 aA bB cC dD 平衡常数 2020 3 20 14 将质量作用定律应用于缺陷反应式时 用 表示某种缺陷的浓度 用n p分别表示电子 空穴的浓度 气体的分压表示该气体的浓度 如 或 2020 3 20 15 应用示例 1 掺杂对电导的影响 通常NiO为具有Ni缺位的非化学计量氧化物 p型半导体在NiO中掺杂微量的Li Na K 等一价金属离子可见 掺Li 后 空穴浓度p要增大 NiO的电导率上升 2020 3 20 16 若在NiO中掺杂微量Fe3 Cr3 等三价金属离子 可见 掺入Fe3 后 电子浓度补偿了空穴浓度 使NiO电导率下降 2020 3 20 18 2 气氛对电导的影响 由上例根据电中性条件 因而代入上式 得 2020 3 20 19 又因空穴电导率q 电子电量 p 空穴迁移率表明 NiO的电导率随烧结或热处理过程中的氧分压的增加按1 6次方的指数规律增加 可从此关系反证缺陷属何种类 进而推知导电机构 2020 3 20 20 四 固溶体的概念及其分类 固溶体 固态条件下 一种组分内溶解了其它组分而形成的单一 均匀的晶态固体 如 红宝石 Al2O3 0 5 2 Cr2O3 纯 Al2O3白宝石 结构中Cr3 的存在能产生受激辐射 固体激光材料固溶体中不同组分的结构基元是以原子尺度混合的 这种混合是以不破坏主晶相结构为前提的 2020 3 20 21 组分间的固溶 晶体的生长过程溶液中结晶时烧结过程原子扩散固溶体与一般化合物有本质区别 化合物AmBn A B之间按确定的克分子比例m n化合 晶体结构固有既不同于A 亦不同于B固溶体 A B之间并不存在确定的克分子比 可以在一定范围内波动 其结构与主晶体结构一致 2020 3 20 22 固溶体分类 一 溶质原子在溶剂晶体结构中所处的位置分类 本质 1 置换固溶体 无机材料多发生在金属阳离子的置换2 填隙固溶体 无机材料多发生在阴离子所形成的间隙中二 按溶质原子在溶剂晶体中的溶解度分类1 连续固溶体 Sr 2 Ba 2BaTiO32 有限固溶体 Ca 2 Ba 2BaTiO3 2020 3 20 23 形成固溶体的条件 1 结构因素 晶格类型相同是形成无限固溶体的必要条件晶格类型差别愈大 固溶度愈低2 离子半径因素离子半径相对差值 r 40形成的固溶体 无限有限非固溶体3 化学性质化学性质相似 酸碱性接近的组元易形成固溶体4 离子的电子构型离子的电子构型相同或相近的组元易形成固溶体 2020 3 20 24 显微结构 陶瓷的显微结构是指在光学显微镜 如金相显微镜 体式显微镜等 或是电子显微镜 SEM TEM 下观察到的陶瓷内部的组织结构 也就是陶瓷的各种组成 晶相 玻璃相 气相 的形状 大小 种类 数量 分布及晶界状态 宽度等 研究陶瓷的显微结构时往往将样品放大数百倍到数千倍 观察范围为微米数量级 2020 3 20 25 微观结构 陶瓷的微观结构是指晶体结构类型 对称性 晶格常数 原子排列情况及晶格缺陷等 其研究分析手段有X射线衍射 电子衍射 场离子显微镜等 研究微观结构时需将样品放大数百万倍 分析精度可达数埃 2020 3 20 26 晶相晶相是指陶瓷材料中具有晶态结构的相 它是陶瓷材料最基本最主要的部分 晶相的性质决定着陶瓷材料的性质 不同的材料决定不同的晶相 晶相包括主晶相和次晶相 或称析出晶相 陶瓷中可能有好几种晶相 2玻璃相玻璃相是指陶瓷材料中的非晶态物质 玻璃相分布在晶粒的周围成连续状或仅仅分布在三界处 也可能形成孤岛状 显微结构 2020 3 20 27 玻璃相的作用 a粘结的作用 填充晶粒的间隙把晶粒粘在一起使陶瓷密化b降低烧结温度促进烧结的作用蒸发一凝聚扩散机理c阻止或延缓晶型转变抑制二次晶粒长大因此玻璃相可提高材料的抗电强度和机械强度玻璃相的缺点 结构疏松Na K 等金属离子作为网络的变性剂易进入玻璃网络 在外电场作用下易迁移故电导产生松驰极化使介质损耗 tg 对材料的机械强度 热稳定性也有影响 显微结构 2020 3 20 28 气相 形成 烧结过程就职气孔排除材料改变密化的过程 坯体中的空气水汽粒合剂和易挥发物形成形成的气体 化合物分解的气体等在烧结过程中大部分沿陶瓷晶界扩散排除 然而总有点少部分特别是裹在晶粒中的气体不能排除它们以O2 H2 N2 CO2 H2O等形成式停留在材料中而形成气相气相对陶瓷材料的电学热学光学和机械强度都有影响 影响 a使抗电强度下降 b使机械强度下降 c气孔使光的透过率下降 显微结构 2020 3 20 29 4 晶界 在多晶材料的形成过程中 晶粒是各自为核心长大的 到后期晶粒长大至相互接触 共同组成了晶粒间界 1 晶界是指同类物质的晶粒间界 GB 相界是指不同类 异相 物质的晶粒间界 PB 晶界的特点 性质 A 晶界处存在大量缺陷B 晶界处有空间电荷区C 晶界上易出现杂质偏析 显微结构 2020 3 20 30 5 相界的特点 由于两相物质之间成分结构 键特性不同 晶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论