




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学目标知识技能目标1掌握并会证明等腰三角形的判定定理和性质定理;2利用等腰三角形的有关定理去研究几何问题过程性目标在证明等腰三角形的有关定理的过程中,进一步体会证明的必要性,掌握证明的书写格式,提高演绎推理能力教学重点1掌握并会证明等腰三角形的判定定理和性质定理;2利用等腰三角形的有关定理去研究几何问题教学难点在证明等腰三角形的有关定理的过程中,进一步体会证明的必要性,掌握证明的书写格式,提高演绎推理能力一、情境导入请同学们按以下步骤画ABC1任意画线段BC;2以B、C为顶点,在BC的同侧作锐角BC,角的两边交于点A 这个ABC是一个什么三角形?怎么知道ABC是一个等腰三角形呢?大家可以用度量或沿AD对折的方法,得到ABAC,这实际上就是我们已经学过的等腰三角形的识别方法:等角对等边同学们是否想过,为什么当ABC沿AD对折时,AB与AC完全重合?现在我们可以用逻辑推理的方法去证明这个问题二、探究归纳1求证:如果一个三角形有两个角相等,那么这两个角所对的边也相等已知:如图,在ABC中,BC求证:ABAC分析要证明ABAC,可设法构造两个全等三角形,使AB,AC分别是这两个全等三角形的对应边,因此可画BAC的平分线AD等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边” 说明(1)还可通过画中线AD或BC边上的高AD得全等三角形(2)推理形式:因为在ABC中,BC(已知)所以ABAC(等角对等边)2同学们回忆一下,我们学过的等腰三角形具有哪些性质?(1)等边对等角;(2)等腰三角形的“三线合一”以前,我们也用折叠的方法(可演示一下)来认识了这两个性质,现在同学们尝试用逻辑推理的方法来证明等腰三角形的性质先试着画出图形,写出已知,求证求证:等腰三角形的两个底角相等已知:ABC中,ABAC求证:BC分析仍可通过画BAC的平分线AD来构造全等三角形等腰三角形的性质定理:等腰三角形的两个底角相等(简称为“等边对等角” )推理形式:因为ABC中,ABAC(已知)所以BC(等边对等角)说明(1)也可作中线AD或BC边上的高线AD;(2)由BADCAD,可进一步推得BDCD,BDACDA90,因此AD也是中线,是BC边上的高线等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(简写成“等腰三角形的三线合一” )在半透明纸上画AOB及角平分线OC,点P是OC上任意一点,PDOA,PEOB,垂足分别为点D和点E沿着射线OC对折,发现PD和PE完全重合,即PDPE,由此,我们得到了角平分线的性质请同学们来叙述这一性质:角平分线上的点到这个角两边的距离相等我们现在可以用逻辑推理的方法去证明这一性质1.同学们按上述性质画出图形,写出已知、求证,老师及时补充已知:OC是AOB平分线,点P是OC上任意一点,PDOA,PEOB,点D、E为垂足求证:PDPE分析只要去证明PD、PE所在的两个直角三角形全等。角平分线性质定理:角平分线上的点到这个角两边的距离相等2.反过来,如果一个点到一个角两边的距离相等,这个点是否就在这个角的平分线上呢?画出图形,我们通过证明来解答这个问题已知:如图,QDOA,QEOB,点D、E为垂足,QDQE求证:点Q在AOB的平分线上分析要证点Q在AOB的平分线上,即QO是AOB的平分线,画射线OQ,只要证AOQBOQ,利用HL证明DOQEOQ,得AOQBOQ角平分线判定定理:到一个角两边距离相等的点在这个角的平分线上前面我们已经用逻辑推理的方法证明了很多定理,如等腰三角形的性质与判定定理、角平分线的性质与判定定理、线段的垂直平分线的性质与判定定理等,这些定理都是命题再如:“两直线平行,内错角相等”;“内错角相等,两直线平行”也是命题观察这些命题的题设与结论,你发现了什么?1命题“两直线平行,内错角相等”的题设是_,结论是_;命题“内错角相等,两直线平行”的题设是_,结论是_在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题如果把其中一个命题叫做原命题,那么另一个就叫做它的逆命题所以上述两个命题叫做互逆命题,如“两直线平行,内错角相等”为原命题,则“内错角相等,两直线平行”为逆命题,反之也可以2每一个命题都有逆命题,只要将原命题的题设与结论互换,便可得到原命题的逆命题但是,原命题正确,它的逆命题未必正确,也就是说原命题与逆命题的真假之间没有必然的联系比如“对顶角相等”是真命题,但它的逆命题“相等的角是对顶角”是一个假命题3我们知道定理是命题,所以定理一定有逆命题我们还知道定理是真命题,但定理的逆命题却不一定是真命题,如果是真命题,则定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理比如我们刚才所讲的命题“两直线平行,内错角相等”;“内错角相等,两直线平行”都是定理,因此它们就是互逆定理再比如等腰三角形的性质定理与判定定理也是互逆定理,同学们能否再举一些互逆定理?例题:例1如图,ABC中,ABAC,E是AC上一点,A2EBC求证:BEAC分析由已知条件A2EBC,联想到作A的平分线AD,则CADEBC,且ADBC,所以EBCCCADC90,即BEAC例2 如图,已知BEAC,CDAB,垂足分别是E、D,BE、CD相交于点O,且12求证:OBOC分析 要证明OBOC,只要证明OBDOCE,可利用角平分线及垂线的条件得ODOE例3 写出下列命题的逆命题,判断原命题与逆命题的真假(1)全等三角形的面积相等;(2)同角的余角相等;(3)如果|a|b|,那么ab;(4)到一个角的两边距离相等的点在这个角的平分线上;(5)线段垂直平分线上的点到这条线段的两个端点的距离相等例4 写出勾股定理“直角三角形两直角边的平方和等于斜边的平方”的逆命题,并证明逆命题是真命题已知:ABC中,ABc,BCa,ACb,且a2+b2c2求证:ABC是直角三角形分析 首先构造一个直角三角形ABC,使得C90,BCa, CAb,然后可以证明ABCABC,从而可知ABC是直角三角形勾股定理的逆定理:如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形例5 如图,四边形ABCD是边长a为的正方形,M为AB中点,E为AD上一点,且AEAD求证:EMC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽师范大学出版社招聘4人模拟试卷及参考答案详解一套
- 2025广东广州医科大学附属医院第一次招聘163人考前自测高频考点模拟试题有完整答案详解
- 2025江苏南京地铁集团有限公司校园招聘(三)考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025北京师范大学一带一路学院教学助理招聘考前自测高频考点模拟试题及答案详解(必刷)
- 2025年宣城市中心医院第一批次招聘22人考前自测高频考点模拟试题附答案详解
- 2025内蒙古选聘自治区特邀行政执法社会监督员考前自测高频考点模拟试题及完整答案详解一套
- 2025年4月四川内江市东兴区城镇公益性岗位招聘19人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025甘肃甘南玛曲县警务辅助人员招聘20人考前自测高频考点模拟试题及答案详解(必刷)
- 2025福建龙岩市上杭县文化旅游发展有限公司(上杭古田建设发展有限公司)所属企业招聘拟聘用人选(二)考前自测高频考点模拟试题含答案详解
- 2025年湖南长沙市开福区公开招聘教师140人模拟试卷及答案详解1套
- 2025年河北唐山市芦台经济开发区公开招聘区属国有企业工作人员18人笔试模拟试题及答案解析
- 2024年新高考Ⅰ卷英语真题(原卷+答案)
- 2025山东东营公安招录辅警392人考试参考试题及答案解析
- 2025四川宜宾市退役军人事务局招聘临聘人员2人考试参考题库及答案解析
- 高考语文 热点04 现代文阅读II之理论与文本互证类题(解析版)
- 2025年注册安全工程师考试冲刺押题:安全生产管理实务专项训练试卷
- 预制混凝土检查井采购合同模板
- 外贸会计自学课件
- 2025年中小学《国庆节、中秋节》放假通知及安全提示
- 致敬 9.3:一场阅兵一部民族精神史诗
- (完整版)室外散水专项方案
评论
0/150
提交评论