TFLS高三上学期统练数学(理科)试卷.doc_第1页
TFLS高三上学期统练数学(理科)试卷.doc_第2页
TFLS高三上学期统练数学(理科)试卷.doc_第3页
TFLS高三上学期统练数学(理科)试卷.doc_第4页
TFLS高三上学期统练数学(理科)试卷.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津外国语大学附属外国语学校2017届高三理科数学试卷本试卷分第I卷(选择题)和第II卷(非选择题)两部分共150分,考试用时120分钟第I卷(选择题 共40分)一选择题:本大题共8小题,每小题5分,共40分,在每小题的4个选项中,只有一项是符合题目要求的,将答案涂在答题卡上1. 复数在复平面上对应的点位于A第一象限 B第二象限 C第三象限 D第四象限2. 对于函数,“的图象关于轴对称”是“是奇函数”的A必要而不充分条件 B充分而不必要条件 C充要条件 D既不充分也不必要条件3. 将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为A. B. C. D. 4. 执行如图所示的程序框图,如果输出,那么判断框内应填入的条件是ABCD5. 某几何体的三视图如图所示,则该几何体的体积为A B C D6. 设,则A B C D7. 关于的方程的三个实根可作为一个椭圆、一个双曲线、一个抛物线的离心率,则的取值范围是A B C D8. 下列五个命题中, 若数列的前项和为,则该数列为等比数列;若,则函数的值域为R;函数与函数的图象关于直线x2对称;已知向量与的夹角为钝角,则实数的取值范围是;母线长为2,底面半径为的圆锥,过顶点的一个截面面积的最大值为其中正确命题的个数为A B C D第II卷(非选择题 共110分)二填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上 9. 一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在2500,3000)(元)月收入段应抽出 人10. 已知双曲线的两条渐近线均和圆相切,且双曲线的右焦点为圆的圆心,则该双曲线的方程为 11. 若存在实数使成立,则实数的取值范围是 12. 已知,若不等式总能成立,则m的最大值是 13. 已知等差数列,若,且 ,则公差= 14. 设点为的外心,若,则 三解答题:本大题共6小题,共80分,将解题过程及答案填写在答题纸上15. (本小题满分13分)在中,角的对边分别为,且.()求的值;()若,求向量在方向上的投影.16. (本小题满分13分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为各局比赛的结果相互独立,第局甲当裁判.()求第局甲当裁判的概率;()表示前局中乙当裁判的次数,求的数学期望.17. (本小题满分13分)在四棱锥中,/,平面,()求证:平面;()求二面角的余弦值;()设点为线段上一点,且直线与平面所成角的正弦值为,求的值18. (本小题满分13分)如图,椭圆经过点离心率,直线的方程为.()求椭圆的方程;()是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.19. (本小题满分14分)设正项数列的前项和是,和都是等差数列,且公差相等恰为等比数列的前三项()求的公比;()求的通项公式;()记数列,的前n项和为,求证:对任意,都有 20. (本小题满分14分)已知函数()当时,求曲线在点处

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论