




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章 圆圆周角和圆心角的关系(第1课时)一教学目标:知识与技能1理解圆周角定义,掌握圆周角定理.2会熟练运用定理解决问题.过程与方法1培养学生观察、分析及理解问题的能力.2在学生自主探索定理的过程中,经历猜想、推理、验证等环节,获得正确学习方式.情感态度与价值观:培养学生的探索精神和解决问题的能力.教学重点:圆周角定理及其应用.教学难点:圆周角定理证明过程中的“分类讨论”思想的渗透.二、教学过程(一) 知识回顾活动内容:1.圆心角的定义?顶点在圆心的角叫圆心角2.圆心角的度数和它所对的弧的度数有何关系?如图:AOB弧AB的度数3.在同圆或等圆中,如果两个圆心角、两条 、两条 中有一组量相等,那么它们所对应的其余各组量都分别相等.(二) 探究新知活动内容: 圆心角 圆周角(1)问题:我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况? 类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有一个交点的角叫做圆周角.(三) 定义的应用活动内容: (1)练习、如图,指出图中的圆心角和圆周角解:圆心角有AOB、AOC、BOC圆周角有BAC 、ABC、ACB活动目的:在学习了圆周角的定义后,为了下面学习圆周角的定理做铺垫,有必要先让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动的注意事项:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO没有延长,所以OAB严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO延长与圆相交后,就会形成圆周角了,所以这里要特别注意.(四) 探究新知活动内容: (一)问题提出:当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角ABC,ADC,AEC.这三个角的大小有什么关系?教师提示:类比圆心角探知圆周角在同圆或等圆中,相等的弧所对的圆心角相等.在同圆或等圆中,相等的弧所对的圆周角有什么关系?AB 为了解决这个问题,我们先探究一条弧所对的圆周角和圆心角之间有什么关系. (二)做一做:如图,AOB=80,(1)请你画出几个 所对的圆周角,这几个圆周角的大小有什么关系?教师提示:思考圆周角和圆心角有几种不同的位置关系?三种:圆心在圆周角一边上,圆心在圆周角内,圆心在圆周角外. (2)这些圆周角与圆心角AOB的大小有什么关系? AOB=2ACB(三)议一议:改变圆心角A0B的度数,上述结论还成立吗?成立(四)猜想出圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.符号语言:ABAB(五)证明定理: 已知:如图,ACB是 所对的圆周角,AOB是 所对的圆心角, 求证:分析:1.首先考虑一种特殊情况:当圆心(O)在圆周角(ACB)的一边(BC)上时,圆周角ACB与圆心角AOB的大小关系.AOB是ACO的外角AOB=C+AOA=OCA=CAOB=2C2.当圆心(O)在圆周角(ACB)的内部时,圆周角ACB与圆心角AOB的大小关系会怎样?老师提示:能否转化为1的情况?过点C作直径CD.由1可得:3.当圆心(O)在圆周角(ACB)的外部时,圆周角ACB与圆心角AOB的大小关系会怎样?老师提示:能否也转化为1的情况?过点C作直径CD.由1可得:活动的注意事项:本环节有不少的数学思想方法,教师在教学中要注意逐一渗透.在(一)中注意渗透类比思想,在(二)中注意渗透“分类讨论”思想,在(三)中注意渗透“特殊到一般”思想,在(四)(五)中注意渗透“猜想,试验,证明”的探究问题一般步骤.(五) 方法小结活动内容: 思想方法:分类讨论,“特殊到一般”的转化活动目的:通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.活动的注意事项:多让学生用自己的语言表述当中用到的方法,然后教师再进行深加工.(六) 定理的应用活动内容:问题回顾:当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角ABC,ADC,AEC.这三个角的大小有什么关系? 连接AO、CO,由此得出定理:同弧或等弧所对的圆周角相等.活动目的:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理.活动的注意事项:这里要注意引导学生学以致用,通过作辅助线添加圆心角,把问题转化到定理的直接应用上.还要注意引导学生对得出的结论加以总结,从而得出新的定理.(七) 课堂小结活动内容:(一) 这节课主要学习了两个知识点:1.圆周角定义.2.圆周角定理及其定理应用.(二)方法上主要学习了圆周角定理的证明,渗透了类比,“特殊到一般”的思想
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 危险化学品生产企业安全生产许可证首次申请办事指引
- 2003年7月国开电大法律事务专科《行政法与行政诉讼法》期末纸质考试试题及答案
- 家具制造业产品质量控制与管理手册
- 2026届海南省昌江县矿区中学化学高一上期中综合测试试题含解析
- 2026届福建省莆田市仙游第一中学化学高二上期末综合测试试题含答案
- 汽车行业制造技术与质量保证措施
- 2025年机关单位财务管理岗位招聘面试题与答案
- 金融行业担当有为争先创优心得体会范文
- 节气的课件教学课件
- 建筑工程质量安全管理预案
- 地理探索之旅:初中研学旅行方案策划
- 妇联开展宣讲活动方案
- 母婴保健培训课件学习
- 2025年6月22日四川省市直事业单位遴选笔试真题及答案解析
- 公安涉密载体管理制度
- 2025年中国蛇养殖行业市场前景预测及投资价值评估分析报告
- JG/T 536-2017热固复合聚苯乙烯泡沫保温板
- T/CSIQ 8008-2018正装鞋
- 浙江易锋机械有限公司年产2000万只空调压缩机活塞项目环评报告
- 视唱练耳讲课课件
- 酒店管理安全总监岗位职责
评论
0/150
提交评论