




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题 27.1相似三角形的判定 教学目的:(1) 从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念(2) 了解成比例线段的概念,会确定线段的比重点、难点1 重点:相似图形的概念与成比例线段的概念2 难点:成比例线段概念一. 观察图片,体会相似图形1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2)2 、小组讨论、交流得到相似图形的概念 什么是相似图形? 3 、思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?观察思考,小组讨论回答:新课标第一网二、成比例线段概念1问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的比是多少?归纳:两条线段的比,就是两条线段长度的比X2、成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条线段满足,则有ad=bc三、例题讲解例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( ) 例2(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?(1)如果a=125cm,b=75cm,那么长与宽的比是多少?(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?小结:上面分别采用m、cm、mm三种不同的长度单位,求得的的值是_的,所以说,两条线段的比与所采用的长度单位_,但求比时两条线段的长度单位必须_例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?分析:根据比例尺=,可求出北京到上海的实际距离二. 巩固练习1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗? 2如图,图形af中,哪些是与图形(1)或(2)相似的?3、下列说法正确的是( )A小明上幼儿园时的照片和初中毕业时的照片相似.B商店新买来的一副三角板是相似的.C所有的课本都是相似的.D国旗的五角星都是相似的.4、填空题形状 的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的 或 而得到的。5观察下列图形,指出哪些是相似图形:6如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_cm,宽是_cm; (大)长是_cm,宽是_cm;(2)(小) ;(大) (3)你由上述的计算,能得到什么结论吗?7在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?8AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?课题 27.2.1相似三角形的判定(一)教学目的:(3) 会用符号“”表示相似三角形如ABC ;(4) 知道当ABC与的相似比为k时,与ABC的相似比为1/k(5) 理解掌握平行线分线段成比例定理重点、难点教学重点: 理解掌握平行线分线段成比例定理及应用教学难点: 掌握平行线分线段成比例定理应用一、知识链接1、相似多边形的主要特征是什么?2、相似三角形有什么性质?二 合作探究1)在相似多边形中,最简单的就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说ABC与ABC相似,记作ABCABC,k就是它们的相似比反之如果ABCABC,则有A=_, B=_, C=_, 且 2)问题:如果k=1,这两个三角形有怎样的关系?明确 (1)在相似多边形中,最简单的就是相似三角形。(2)用符号“”表示相似三角形如ABC ;(3)当ABC与的相似比为k时,与ABC的相似比为1/k3) 活动1 (教材P40页 探究1)(1) 如图27.2-1),任意画两条直线l1 , l2,再画三条与l1 , l2 相交的平行线l3 , l4, l5.分别量度l3 , l4, l5.在l1 上截得的两条线段AB, BC和在l2 上截得的两条线段DE, EF的长度, ABBC 与DEEF相等吗?任意平移l5 , 再量度AB, BC, DE, EF的长度, ABBC 与DEEF相等吗? 新课标第一网(2) 问题,ABAC=DE( ),BCAC=( )DF强调“对应线段的比是否相等”(3) 归纳总结:平行线分线段成比例定理 三条_截两条直线,所得的_线段的比_。应重点关注:平行线分线段成比例定理中相比线段同线;4)例1 如图、若AB=3cm,BC=5cm,EK=4cm,写出= =_、 =_。 A E求FK的长? B K F C4) 活动2平行线分线段成比例定理推论思考:1、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l3上,如图27.2-2(1),所得的对应线段的比会相等吗?依据是什么?2、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?3、 归纳总结:平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的_线段的比_.三. 练习巩固 如图,在ABC中,DEBC,AC=4 ,AB=3,EC=1.求AD和BD.四. 小结巩固(1) 谈谈本节课你有哪些收获“三角形相似的预备定理”这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似(2) 相似比是带有顺序性和对应性的:如ABCABC的相似比,那么ABCABC的相似比就是,它们的关系是互为倒数五、当堂检测1如图,ABCAED, 其中DEBC,找出对应角并写出对应边的比例式2如图,ABCAED,其中ADE=B,找出对应角并写出对应边的比例式 3 、已知:梯形ABCD中,ADBC,EFBC,AE=FC,求:AE的长。 A D E F B C课题 27.2.1 相似三角形的判定(二)一、学习目标1经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程2会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题二、重点、难点1重点:相似三角形的定义与三角形相似的预备定理2难点:三角形相似的预备定理的应用三 知识链接(1)相似多边形的主要特征是什么?(2) 平行线分线段成比例定理及其推论的内容是什么?(3)在相似多边形中,最简单的就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说ABC与ABC相似,记作ABCABC,k就是它们的相似比反之如果ABCABC,则有A=A, B=B, C=C, 且 (4)问题:如果k=1,这两个三角形有怎样的关系?四 、探索新知1 问题:如果ABCADE,那么你能找出哪些角的关系?边呢? 2 、思考如图27.2-3,在ABC中,DEBC,DE分别交AB,AC于点D,E。问题:(1) ADE与ABC满足“对应角相等”吗?为什么?(2) ADE与ABC满足对应边成比例吗?由“DEBC”的条件可得到哪些线段的比相等?(3) 根据以前学习的知识如何把DE移到BC上去?(作辅助线EFAB)你能证明AE:AC=DE:BC吗?(4)写出ABCADE的证明过程。(5) 、归纳总结:判定三角形相似的(预备)定理:平行于三角形一边的直线和其他两边相交,所成的三角形与原来三角形相似。五、例题讲解例1(补充)如图ABCDCA,ADBC,B=DCA(1)写出对应边的比例式;(2)写出所有相等的角;新课标第一网(3)若AB=10,BC=12,CA=6求AD、DC的长分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素对于(3)可由相似三角形对应边的比相等求出AD与DC的长 解:例2(补充)如图,在ABC中,DEBC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长 分析:由DEBC,可得ADEABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长解:六、课堂练习1(选择)下列各组三角形一定相似的是( )A两个直角三角形 B两个钝角三角形 C两个等腰三角形 D两个等边三角形 2(选择)如图,DEBC,EFAB,则图中相似三角形一共有( )A1对 B2对 C3对 D4对3、如图,ABEFCD,图中共有 对相似三角形,写出来并说明理由;4如图,在ABCD中,EFAB,DE:EA=2:3,EF=4,求CD的长 七、当堂检测1如图,ABCAED, 其中DEBC,写出对应边的比例式2如图,ABCAED,其中ADE=B,写出对应边的比例式 3如图,DEBC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长4、如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h(设网球是直线运动)课题 27.2.1相似三角形的判定(三)学习目标:(1) 初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法(2) 能够运用三角形相似的条件解决简单的问题重点、难点学习重点: 掌握两种判定方法,会运用两种判定方法判定两个三角形相似。学习难点: (1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似一.知识链接(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 相似三角形与全等三角形有怎样的关系?二 、探索新知 探讨问题:1、如图,如果要判定ABC与ABC相似,是不是一定需要一一验证所有的对应角和对应边的关系?新 课标第 一网2、可否用类似于判定三角形全等的SSS方法,能否通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢?3、 探究2任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。(1)问题:怎样证明这个命题是正确的呢?(2)探求证明方法(已知、求证、证明)如图27.2-4,在ABC和ABC中,求证ABCABC 证明 :4 【归纳】 三角形相似的判定方法1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似 5 、探讨问题:可否用类似于判定三角形全等的SAS方法,能否通过两个三角形的两组对应边的比相等和它们对应的夹角相等,来判定两个三角形相似呢?(画图,自主展开探究活动)6 【归纳】 三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似三、例题讲解解:归纳分析:判定两个三角形是否相似,可以根据已知条件,画草图,看是否符合相似三角形的定义或三角形相似的判定方法中,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边 例2 (补充)已知:如图,在四边形ABCD中,B=ACD,AB=6,BC=4,AC=5,CD=,求AD的长分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明计算得出,结合B=ACD,证明ABCDCA,再利用相似三角形的定义得出关于AD的比例式,从而求出AD的长解:四、课堂练习1如果在ABC中B=30,AB=5,AC=4,在ABC中,B=30AB=10,AC=8,这两个三角形一定相似吗?试着画一画、看一看? 2如图,ABC中,点D、E、F分别是AB、BC、CA的中点,求证:ABCDEF五、回顾与反思(1)谈谈本节课你有哪些收获六 当堂检测1如图,ABAC=ADAE,且1=2,求证:ABCAED2已知:如图,P为ABC中线AD上的一点,且BD2=PDAD,求证:ADCCDP课题 27.2.1 相似三角形的判定(四)一、学习目标1掌握“两角对应相等,两个三角形相似”的判定方法2能够运用三角形相似的条件解决简单的问题二、重点、难点1重点:三角形相似的判定方法3“两角对应相等,两个三角形相似”2难点:三角形相似的判定方法3的运用三、知识链接(1)我们已学习过哪些判定三角形相似的方法?(2)如图,ABC中,点D在AB上,如果AC2=ADAB,那么ACD与ABC相似吗?说说你的理由(3)如(2)题图,ABC中,点D在AB上,如果ACD=B,那么ACD与ABC相似吗? (4)【归纳】三角形相似的判定方法3 如果一个三角形的两个角与另一个三角形两个角对应相等,那么这两个三角形相似四、例题讲解 例1(教材P48例2)弦AB和CD相交于o内一点P,求证:PAPB=PCPD分析:要证PAPB=PCPD,需要证,则需要证明这四条线段所在的两个三角形相似由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似ABCDPO例2 (补充)已知:如图,矩形ABCD中,E为BC上一点,DFAE于F,若AB=4,AD=5,AE=6,求DF的长分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在ABE和AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似五、课堂练习1 、填一填(1)如图3,点D在AB上,当 时, ACDABC。(2)如图4,已知点E在AC上,若点D在AB上,则满足新课标第一网 条件 ,就可以使ADE与原ABC相似。ABDC图 3 ABCE图 42已知:如图,1=2=3,求证:ABCADE3. 如图,ABC中, DEBC,EFAB,试说明ADEEFC. AEFBCD 4下列说法是否正确,并说明理由(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形六、作业1 、图1中DEFGBC,找出图中所有的相似三角形。2 、图2中ABCDEF,找出图中所有的相似三角形。FABCDGE图 1AB图 2CFDEO3 、在ABC和ABC中,如果A80,C60,A80,B40,那么这两个三角形是否相似?为什么?4 、已知:如图,ABC 的高AD、BE交于点F求证:5已知:如图,BE是ABC的外接圆O的直径,CD是ABC的高(1)求证:ACBC=BECD; (2)若CD=6,AD=3,BD=8,求O的直径BE的长6 .已知D、E分别是ABC的边AB,AC上的点,若A=35, C=85,AED=60 求证:ADAB= AEAC7、如图:在Rt ABC中, ABC=900,BDAC于D ,若E是BC中点,ED的延长线交BA的延长线于F,求证:AB : BC=DF : BFABDCEF课题 27.2.2相似三角形应用举例(一)教学目的:1 进一步巩固相似三角形的知识 2 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题 3 通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力重点、难点1重点:运用三角形相似的知识计算不能直接测量物体的长度和高度2难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题)一、知识链接1、判断两三角形相似有哪些方法?2、相似三角形有什么性质?二、.探索新知1、问题1:学校操场上的国旗旗杆的高度是多少?你有什么办法测量?2、世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” 塔的个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米据考证,为建成大金字塔,共动用了10万人花了20年时间原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低在古希腊,有一位伟大的科学家叫泰勒斯一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的你知道泰勒斯是怎样测量大金字塔的高度的吗?3、例题讲解例3:据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO (思考如何测出OA的长?) 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度解: 4、 课堂练习在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米? (在同一时刻物体的高度与它的影长成正比例)问题:估算河的宽度,你有什么好办法吗?5、例4 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R如果测得QS = 45 m,ST = 90 m,QR = 60 m,求河的宽度PQ分析:设河宽PQ长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即再解x的方程可求出河宽解: 6、课堂练习如图,测得BD=120 m,DC=60 m,EC=50 m,求河宽AB。7、结合此题写出测量河宽的方案。三、回顾与反思(1) 谈谈本节课你有哪些收获四、当堂检测 1 如图,这是圆桌正上方的灯泡(当成一个点)发出的光线照射桌面形成阴影的示意图,已知桌面的直径为1.2米,桌面距离地面为1米,若灯泡距离地面3米,则地面上阴影部分的面积为多少?2.为了测量一池塘的宽AB,在岸边找到了一点C,使ACAB,在AC上找到一点D,在BC上找到一点E,使DEAC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗?ABCD E 3、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米4、如图,已知零件的外径a为25cm ,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。5 、如图,ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?NMQPEDCBA课题 :27.2.2相似三角形应用举例(二)学习目的:4 进一步巩固相似三角形的知识 5 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题 6 通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力重点、难点1重点:运用三角形相似的知识计算不能直接测量物体的长度和高度2难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题)一 、知识链接1、判断两三角形相似有哪些方法?2、相似三角形有什么性质?二 .探索新知1 、例5 已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C? 分析:(见教材P49页)解:注意 :认真体会这一生活实际中常见的场景,借助图形把这一实际中常见的场景,抽象成数学图形,利用相似的性质解决这一实际问题,图形可以滞后给出,先经历这一抽象的过程如果你们对于如何用数学语言表述有一定的困难,应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版有子女的离婚合同协议书
- 赣州上犹中考试题及答案
- 风光互补考试题及答案
- 二模考试题目及答案
- 中国氧化铁纳米粉项目经营分析报告
- 鼎尖联考试题及答案
- 钓鱼法师考试题及答案解析
- 2025年年产1000吨聚氯乙烯糊状树脂项目可行性研究报告
- 电商法务考试题及答案
- 中国电热膜温控器行业市场规模及未来投资方向研究报告
- 海上风电基础知识培训课件
- 2025年医疗器械临床试验质量管理规范培训考试试题及答案
- 国际道路应急预案
- 人防指挥所信息化建设方案
- 生死疲劳阅读报告课件
- 胸椎管狭窄症诊疗规范
- 夜班护士安全培训内容课件
- 新版中华民族共同体概论课件第九讲混一南北与中华民族大统合 (元朝时期)-2025年版
- 2025至2030中国城际出行市场发展前景与趋势预测分析报告
- 征拆工作课件
- 2025年事业单位考试时事政治知识试题有答案
评论
0/150
提交评论