




已阅读5页,还剩62页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020 3 21 1 第二章优化设计的数学基础 2 1多元函数的方向导数和梯度 2 2多元函数的泰勒展开 2 3无约束优化问题的极值条件 2 4凸集 凸函数与凸规划 2 5等式约束优化问题的极值条件 2 6不等式约束优化问题的极值条件 2020 3 21 2 1 方向导数 二元函数 在 点处的偏导数的定义是 二元函数 在 点处沿某一方向 的变化率 其定义为 方向导数 2 1多元函数的方向导数和梯度 2020 3 21 3 图1二维空间中的方向 偏导数与方向导数的关系 2020 3 21 4 三元函数在点处沿s方向的方向导数 依次类推 即可得到n元函数在点x0处沿s方向的方向导数 2020 3 21 5 2 二元函数的梯度 令 为函数F x1 x2 在x0点处的梯度 2020 3 21 6 当梯度方向和d方向重合时 方向导数值最大 即梯度方向是函数值变化最快方向 而梯度的模就是函数值变化率的最大值 梯度的模 2020 3 21 7 多元函数的梯度 2020 3 21 8 多元函数的梯度的模 函数的梯度方向与函数的等值面相垂直 也就是和等值面上过x0的一切曲线相垂直 由于梯度的模因点而异 即函数在不同点处的最大变化率是不同的 因此 梯度是函数的一种局部性质 2020 3 21 9 解 2020 3 21 10 解 则函数在处的最速下降方向为 2020 3 21 11 该方向上的单位向量为 新点 该点函数值 2020 3 21 12 常用梯度公式 注意 梯度为向量 二次型 2020 3 21 13 在点处的泰勒展开为 其中 1 一元函数 2 2多元函数的泰勒展开 2020 3 21 14 2 二元函数 其中 二元函数在点处的泰勒展开式为 2020 3 21 15 上式写成矩阵形式 2020 3 21 16 令 上式可写成 称为函数在点处的海赛 Hessian 矩阵 参见教材例题P30 2020 3 21 17 海赛矩阵是由函数在点处的二阶偏导数组成的方阵 由于函数的二次连续性 有 所以矩阵为对阵方阵 2020 3 21 18 海赛矩阵 3 多元函数 其中 梯度 泰勒展开式 2020 3 21 19 若将函数的泰勒展开式只取到线性项 即取 则是过点和函数所代表的超曲面相切的切平面 若将函数的泰勒展开式取到二次项时 则得到二次函数形式 在线性代数中将二次齐次函数称为二次型 矩阵形式 对称矩阵 2020 3 21 20 当对任何非零向量x使 则二次型函数正定 G为正定矩阵 2020 3 21 21 海赛矩阵的特征 是实对称矩阵 4 海赛矩阵与正定 矩阵正定的充要条件 矩阵G的各阶顺序主子式为正 即 矩阵负定的充要条件 矩阵G的 奇数阶主子式 主子式 偶数阶主子式 海赛矩阵的正定性 正定 为全局极小值点的充分条件 负定 为全局极大值点的充分条件 2020 3 21 22 例3判定矩阵是否正定 解 该对称矩阵的三个主子式依次为 故可知矩阵G是正定的 2020 3 21 23 定理 若二次函数中Q正定 则它的等值面是同心椭球面族 且中心为 证明 作变换 代入二次函数式中 结论 Q为正定矩阵的二次型的等值面是以的同心椭球面族 原二次函数就是以为中心的同心椭球面族 椭圆中心为极小值点 2020 3 21 24 例4把二次函数化为矩阵向量形式并检验Q是否正定 如正定 试用公式求这个函数的极小点 解 与题中函数比较各系数得 由计算知Q正定 极小点 2020 3 21 25 的梯度和Hesse矩阵 解 因为 则 又因为 故Hesse阵为 例5 求目标函数 2020 3 21 26 1 一元函数 对于可微的一元函数判断在处是否取得极值的过程 则为极小点 逐次检验其更高阶导数的符号 开始不为零的导数阶数若为偶次 则为极值点 若为奇次 则为拐点 则为极大点 2 3无约束优化问题的极值条件 2020 3 21 27 2 二元函数 定理1 若二元可微函数在处取得极值的必要条件是 即 凡满足上式的点称为函数的驻点 零向量 2020 3 21 28 如下图所示的二元函数 在M0点虽有和是个驻点 但它不是极值点 2020 3 21 29 定理2 若二元可微函数在的某个邻域取得极小值的充分条件是要求在该点附近的一切点均满足 若函数存在连续的一阶及二阶偏导数 当满足 则泰勒展开式的函数增量近似式 略三阶以上高阶微量 为 2020 3 21 30 令 则 可见 函数增量的性态与A B C的值有关 可以证明 当满足以下条件时 为极小值 证明略 此条件反映了函数在该点的海赛矩阵的各阶主子式均大于零 即正定 2020 3 21 31 结论 二元函数在某点取得极小值的充分条件是要求该点处的海赛矩阵为正定 且 对于二元函数在处取得极值的充分必要条件是 参见教材例题P32 2020 3 21 32 3 多元函数 对于多元函数若在处取得极值 则 必要条件 充分条件 正定或负定 2020 3 21 33 当极值点x 能使f x 在整个可行域中为最小值时 即在整个可行域中对任一x都有f x f x 则x 为全域最优点 全域极小点 若f x 为局部可行域中的极小值而非整个可行域的最小值时 则称x 为局部最优点或相对最优点 优化的目标是全域最优点 为了判断某个极值点是否为全域最优点 研究函数的凸性是必要的 2 4凸集 凸函数与凸规划 2020 3 21 34 函数的凸性表现为单峰性 对于具有凸性特点的函数来说 其极值点只有一个 因而该点既是局部最优亦是全域最优点 为了研究函数的凸性 下面引入凸集的概念 2020 3 21 35 1 凸集 如果对一切及一切满足 的实数 点则称集合 为凸集 否则称为非凸集 若y是x1和x2连线上的点 则有 整理后即得 图2 8二维空间的凸集与非凸集 2020 3 21 36 图2 9凸集的性质 2020 3 21 37 2 凸函数 具有凸性 表现为单峰性 或只有唯一的局部最优值亦即全域最优值的函数 称为凸函数或单峰函数 其数学定义是 设f x 为定义在n维欧式空间中的一个凸集D上的函数 如果对于任何实数以及对D中任意两点x1 x2恒有 则为D上的凸函数 若不满足上式 则为凹函数 如式中的等号去掉 则称其为严格凸函数 2020 3 21 38 凸函数的几何意义 在函数曲线上取任意两点连成一直线段 则该线段上任一点的纵坐标值必大于或等于该点处的原函数值 2020 3 21 39 凸函数的性质 1 若f x 为定义在凸集D上的一个凸函数 对于任意实数a 0 则af x 也是凸集D上的凸函数 2 定义在凸集D上的两个凸函数f1 x f2 x 其和f1 x f2 x 亦为该凸集上的一个凸函数 3 若f1 x f2 x 为定义在凸集D上的两个凸函数 为两个任意正数 则仍为D上的凸函数 2020 3 21 40 3 凸性条件 1 根据一阶导数 函数的梯度 来判断函数的凸性 设f x 为定义在凸集R上 且具有连续的一阶导数的函数 则f x 在R上为凸函数的充要条件是对凸集R内任意不同两点 下面不等式恒成立 2020 3 21 41 2 根据二阶导数 海赛矩阵 来判断函数的凸性 设f x 为定义在凸集R上且具有连续二阶导数的函数 则f x 在R上为凸函数的充要条件为 海赛矩阵在R上处处半正定 对于严格的凸函数 其充要条件为海赛矩阵为正定 当海赛矩阵G的主子式 det G 0时 矩阵正定det G 0时 矩阵半正定det G 0时 矩阵负定det G 0时 矩阵半负定 G x 正定 是x 为全局极小值点的充分条件 G x 半正定 是x 为局部极小值点的充分条件 G x 负定 是x 为全局极大值点的充分条件 G x 半负定 是x 为局部极大值点的充分条件 说明 2020 3 21 42 4 凸规划 对于约束优化问题 若 都为凸函数 则称此问题为凸规划 2020 3 21 43 凸规划的性质 2 可行域为凸集 3 凸规划的任何局部最优解就是全局最优解 1 若给定一点 则集合为凸集 2020 3 21 44 不论是无约束或有约束的优化问题 在实际应用中 要证明一个优化问题是否为凸规划 一般比较困难 有时甚至比求解优化问题本身还要麻烦 尤其对一些工程问题 由于其数学模型的性态都比较复杂 更难实现 因此 在优化设计的求解中 就不必花精力进行求证 而通常是从几个初始点出发 找出几个局部最优解 从中选择目标函数值最好的解 注意 2020 3 21 45 等式约束优化问题 求解等式约束化问题的理论基础是导出极值存在的条件 2 5等式约束优化问题的极值条件 2020 3 21 46 1 消元法 降维法 2020 3 21 47 2020 3 21 48 2 拉格朗日乘子法 升维法 思想 通过增加变量将等式约束化问题变成无约束化问题 所以又称作升维法 引入拉格朗日乘子 并构成一个 新的目标函数 拉格朗日函数 拉格朗日乘子 新目标函数的极值的必要条件 2020 3 21 49 2020 3 21 50 库恩 塔克条件 K T条件 不等式约束的多元函数极值的必要条件是著名的库恩 塔克 Kuhn Tucker 条件 它是非线性优化问题的重要理论 为了便于理解库恩 塔克条件 首先分析一元函数在给定区间的极值条件 2 6不等式约束优化问题的极值条件 2020 3 21 51 1 一元函数在给定区间上的极值条件 一元函数f x 在区间 a b 的极值问题 可表示为 求解思想 引入松弛变量使不等式约束变成等式约束 再利用拉格朗日乘子法求解等式约束的极值问题 2020 3 21 52 这样可以转化为拉格朗日函数 是对应于不等式约束的拉格朗日乘子 其值均为非负的 设为松弛变量 则上两个不等式可写为如下两个等式 2020 3 21 53 结论 2020 3 21 54 从以上分析可以看出 对应于不起作用的约束的拉格朗日乘子取零值 因此可以引入起作用约束的下标集合 一元函数在给定区间的极值条件 可以改写为 极值条件中只考虑起作用的约束和相应的乘子 2020 3 21 55 2 库恩 塔克条件 库恩 塔克条件 K T条件 可表述为 对于多元函数不等式的约束优化问题 2020 3 21 56 库恩 塔克条件表明 如点是函数的极值点 要么 此时 或者目标函数的负梯度等于起作用约束梯度的非负线性组合 此时 2020 3 21 57 库恩 塔克条件的几何意义 在约束极小值点处 函数的负梯度一定能表示成起作用约束在该点梯度 法向量 的非负线性组合 2020 3 21 58 2020 3 21 59 起作用约束 2020 3 21 60 从图中可以看出 处在 和 即线性组合的系数为正 是在 取得极值的必要条件 角锥之内 2020 3 21 61 同时具有等式和不等式约束的优化问题 库恩 塔克条件 K T条件 2020 3 21 62 库恩 塔克条件是多元函数取得约束极值的必要条件 可用来作为约束极值的判断条件 又可以来直接求解较简单的约束优化问题 对于目标函数和约束函数都是凸函数的情况 符合K T条件的点一定是全局最优点 这种情况K T条件即为多元函数取得约束极值的充分必要条件 2020 3 21 63 例库恩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠山区安全知识培训课件
- 情景画课件教学课件
- 幼儿园园本研修方案
- 爱心捐赠活动策划方案
- 新昌社工面试题及答案
- 激素药品考试题及答案
- 商法自考试题及答案
- 家电公司企业文化建设办法
- 头晕护理试题及答案
- 济宁医保考试题及答案
- 2024年考研英语核心词汇
- 天津市和平区2024-2025学年八年级上学期11月期中道德与法治试题
- 2024年新版(外研版新交际)二年级英语上册单词带音标
- DB11∕T 1350-2016 文物建筑修缮工程验收规范
- 公路工程监理安全生产管理制度(图表丰富)
- 2024年度宁夏回族自治区安全员之C证(专职安全员)典型题汇编及答案
- 数智工程师专项测试题及答案
- 市政道路及设施零星养护服务技术方案(技术方案)
- GB/T 2424.7-2024环境试验第3部分:支持文件及导则试验A(低温)和B(高温)的温度箱测量(带负载)
- 医疗收费及费用管理制度
- 消化系统常见疾病课件(完美版)
评论
0/150
提交评论