



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
面积与反比例函数教学设计西安市第十四中学 许亚琦设计意图:与反比例函数相关的面积问题是活跃在近年中考的重要问题,解这类问题的关键是理解反比例函数表达式中的几何意义,并熟悉一些基本图形、基本结论.为了帮助学生解决动点问题,提高学生利用“数形结合思想”解决问题的能力,设计本专题.本专题的教学思路是:先复习反比例函数的面积不变性;在此基础上再利用几何画板展示一些变式训练,解决动点问题;最后让学生自选一个数学模型进行探究和应用,相互交流,共同学习,解决其它问题;最终体会学习代数的方法:变式训练;学习几何图形的方法:基本图形分析法,并综合运用数学模型,学好数学.因此,我将本节课的教学目标设计为:【教学目标】知识与技能:进一步理解的几何意义,解决面积与反比例函数中的动点问题.过程与方法:探索并归纳反比例函数的其他数学模型.情感态度与价值观:激发学生的求知欲望,在学习过程中掌握学习数学的方法.【教学重点】反比例函数面积不变性及应用.【教学难点】反比例函数的其他数学模型的探究与归纳.【教学方法】提问法、讨论法、演示法、发现法、探究法【学习方法】观察法、分析法、练习法【教学准备】几何画板课件【教学过程】一、知识点睛,复习旧知.动画演示:学生观察反比例函数的面积不变性,复习基本图形.过反比例函数图象上任意一点向两坐标轴作垂线,所围成的矩形的面积都等于.通过点B的运动,使学生认识到点B是图象上任意一点,即图象上的一个动点.连接对角线OB,由于矩形的对角线将矩形分成两个面积相等的三角形,则和的面积也相等,为.若将点B改为动点,则三角形的面积也不变,,为.我们把这一性质称为反比例函数的面积不变性. 设计意图:通过知识点睛,引导学生回顾的几何意义,符合学生的认知规律,为应用面积不变性解决动点问题做好准备.对反比例函数图象上任意一点B的认识,是解决其他问题的基础.教师通过动画演示,使学生感到亲切、自然,最大限度地激发了学生的学习兴趣,提高学生思考问题的主动性,从而培养对数学学科的浓厚兴趣.二、循序渐进,化难为简.变式 若点D是x轴上的一个动点,则的面积有什么特征?学生观察课件,独立思考,怎样解决问题,依据呢?例题1:如图,反比例函数和上分别有两点A、B,且ABx轴,点P是x轴上一动点,则ABP的面积为()A5B5.5 C6.5 D10强调:等底等高的两个三角形面积相等.设计意图:将基本图形中的“固定的点”改成“x轴上的动点”,学生通过观察,结合已知的结论:等底等高的两个三角形面积相等,可以轻松的解决动点问题.观察与思考,就是学生主动参与学习的过程,既提高了学生的参与度,又发挥了学生的自由度,变调动学为主动学.变式 若点E是y轴上的一个动点,则的面积有什么特征?学生发表自己的见解,教师评价.例题2:如图,直线x=2与反比例函数,的图象分别交于A,B两点,若点P是y轴上任意一点,则PAB的面积是()A B1 C D2设计意图:学生在例一的基础上进行变式训练,可以迅速的解答此问题,增强了学习的信心.教师归纳:通过上面两个例题的学习,我们解决了动点问题.关键是“化动为定”.变式训练 若将线段OA改成“x轴上的一条动线段MN,且MN=BC,则四边形的面积有什么特征?例题3:如图,点A是反比例函数的图象上任意一点,ABx轴交反比例函数的图象于点B,以AB为边作平行四边形ABCD,其中C、D在x轴上,则为()A2B3C4D5强调:等底等高的两个平行四边形面积相等.设计意图:将基本图形中的“固定的线段”改成“动线段”,学生通过观察,结合已知的结论:等底等高的两个平行四边形面积相等,可以轻松的解决问题.感受“模型思想”的重要性,引发学生的求知欲望:反比例函数还有其他的数学模型吗?三、探究与应用在上面的变式训练中,我们多次使用了反比例函数的面积不变性和等底等高的两个三角形、平行四边形面积相等这些基本结论下面,我们利用这些基本图形和结论再来探究一些新的数学模型.学生分组,自选模型来探究,小组代表发言,展示学习成果.模型一:如图,双曲线经过矩形OABC的边BC的中点E,交AB于点D求证:点D一定是边AB的中点.模型二:如图,点P、C是第一象限内双曲线的图象上任意两点,过点P、C分别作PAx轴,CDx轴,垂足分别为A、D.求证: 学生代表讲解,教师评价.设计意图:反比例函数的数学模型较多,在此选择两个简单的模型,让学生探究与应用.一方面起到提升学习能力的作用;另一方面提高学生的口头表达能力.四、课堂小结,总结收获(1)对于这节课大家还有什么疑问吗?(2)通过这节课学习,同学们有什么收获?设计意图:在独立思考和合作交流中引导学生梳理本节课在知识和数学思想方法方面的收获,形成知识网络,提升对数学思想方法的理性认识.在总结的同时让学生体验收获知识的快乐,培养敢于展示自我,敢说、敢问、自信的学习品质.五、布置作业,深化知识.1. 双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A,B两点,连接OA,OB,则AOB的面积为()A1 B2 C3 D42. 如图,已知双曲线经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k=_.3. 如图,已知反比例函数的图象经过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第3-4单元易错综合测试卷(月考)四年级数学下册(浙教版)
- 电子信息产业发展基金项目可行性报告
- 新质生产力赋能新能源汽车发展
- 高考补充篇目《青玉案元夕》教学设计
- 专题10特殊的平行四边形中的最值模型之胡不归模型(原卷版)
- 2025年小升初黄冈试题及答案
- 七年下册道德与法治41人要有自信测试(教师版)
- 探索与表达规律教学设计-北师大版数学七年级上册
- Unit8作文人教版(2012)八年级英语下册
- 2024年九江市柴桑区城区中小学校选调教师笔试真题
- 骨科植入物简介演示
- 2024近场电商行业白皮书-凯度x淘宝买菜-202401
- 医院感染控制标准执行案例分析及改进
- 班主任微创意:59招让班级管理脑洞大开
- 机械基础 第三版 教案 模块二 机械零件的材料
- 呼吸科利用PDCA循环提高肺功能检查结果达标率品管圈QCC成果汇报
- 业务员代理协议合同
- 电机可靠性与寿命评估
- 安全监理工作流程图监理
- 二甲基乙酰胺MSDS化学品安全技术说明书
- 07FK02防空地下室通风设备安装图集
评论
0/150
提交评论