



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题3.31Proof若(1)成立则及,使当 时,初值问题 的解满足对一切有, 由解关于初值的对称性,(3,1)的两个解及都过点,由解的存在唯一性,当时故若(2)成立,取定,则,使当 时,对一切有因初值问题的解为,由解对初值的连续依赖性,对以上,使当时对一切有而当时,因故这样证明了对一切有2Proof:因及都在G内连续,从而在G内关于满足局部Lipschitz条件,因此解在它的存在范围内关于是连续的。设由初值和足够小)所确定的方程解分别为,即,于是 因及、连续,因此这里具有性质:当时,;且当时,因此对有即是初值问题的解,在这里看成参数0显然,当时,上述初值问题仍然有解。根据解对初值和参数的连续性定理,知是的连续函数,从而存在而是初值问题的解,不难求解 它显然是的连续函数。3解:这里满足解对初值的可微性定理条件故: 满足的解为 故 4解:这是在(1,0)某领域内满足解对初值可微性定理条件,由公式易见是原方程满足初始条件的解 故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文物保护与修复考试试题及答案
- 2025年文化战争与社会心态能力评估试卷及答案
- 2025年文化遗产保护与传承政策研究考核试卷及答案
- 2025年文化市场管理师文化产业试题及答案
- 2025年文化创意产业经理职业资格考试试卷答案解析
- 2025年未来医疗健康管理模式探索试题及答案
- 2025年微信营销策划实践能力测评试题及答案解析
- 2025年线性低密度聚乙烯合作协议书
- 2025年网络运维总监职业能力考试试题及答案解析
- 偏简单数学试卷
- 大型丧事活动方案
- 阿尔茨海默氏症典型病例解析
- 2025年中小学心理健康教育教师考试试题及答案
- 教师写作培训课件
- 中国无人机智能巡检系统行业市场前景预测及投资价值评估分析报告
- 十五五林业建设总结和十五五林业发展规划思路-0-图文
- 财务分析入门从零开始学
- 2025年航拍无人机驾驶员(五级)职业技能鉴定理论考试题库(含答案)
- 秋冬常见传染病预防知识
- 事业单位人事管理制度改革与发展
- 生父母或监护人同意送养的书面意见
评论
0/150
提交评论