



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档等差数列的前n项和公式教学设计职业技术学校 刘老师大纲分析:高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。教材分析:数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。学生分析:数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。教学目标:知识与技能目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。教学重点与难点:等差数列前n项和公式是重点。获得等差数列前n项和公式推导的思路是难点。教学用具:ppt整节课分为三个阶段:问题呈现阶段探究发现阶段公式应用阶段问题呈现1: 首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道这个图案一共花了多少宝石吗?也就是计算1+2+3+100。紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。200多年前,高斯的算术教师提出了下面的问题:123+100?据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案:(1100)(299)(5051)101505050【设计说明】 了解历史,激发兴趣,提出问题,紧扣核心。问题呈现2: 图案中,第1层到第21层一共有多少颗宝石? 在知道了高斯算法之后,同学们很容易把本题与高斯算法联系起来,也就是联想到“首尾配对”摆出几何图形,引 引导学生去思考,如何将图与高斯的倒序相加结合起来,让他们借助几何图形,将两个三角形拼成平行四边形.获得算法:【设计说明】 源于历史,富有人文气息. 图中算数,激发学习兴趣.这一个问题旨在让学生初步形成数形结合的思想,这是在高中数学学习中非常重要的思想方法.借助图形理解逆序相加,也为后面公式的推导打下基础.探究发现1:问题3:由前面的例子,不难用倒序相加法推出【设计说明】在前面两个问题的基础上,问题呈现3提出了等差数列求和公式的推导,鼓励学生利用“倒序相加”的数学方法推导公式。探究发现2:根据等差数列求和公式1和等差数列通项公式,推出等差数列公式2问题4探究发现3:有这样一个梯形,上底长为,下底长为,高为,求这个梯形的面积为多少平方米?面积公式: 【设计说明】利用梯形的面积公式,帮助学生记忆等差数列的求和公式,让学生对于“数形结合”的理解更加深一层。公式应用 根据题目选用公式 利用通项求中间量 依据条件变用公式例1、已知等差数列an中,a1=-8,a20=106,求s20分析:本例提供了两个数据,学生可以从题目条件发现,只告知了首项、尾项和项数,于是从这一方向出发,可知使用公式1,达到学生熟悉公式的要素与结构的教学目的。解:由已知条件得 s20= =980例2、求等差数列1,4,7,10的前100项的和。分析:本例已知首项,公差和项数,引导学生使用公式2。事实上,根据提供的条件再与公式对比,通过两种公式的比较,引导学生应该根据信息选择适当的公式,以便于计算。解:已知a1=1,d=3,n=100,所以有s100=1001 3=14950巩固练习:1、根据下列条件,求相应的等差数列an的Sn 2、求等差数列-13,-9,-5,-1,3的前100项的和课堂小结:回顾从特殊到一般的研究方法;体会等差数列的基本元表示方法,逆序相加的算法,及数形结合的数学思想;掌握等差数列的两个求和公式及简单应用。作业布置:必做题:课本第10页 习题6.2.3:1、2选做题:课本第12页 第8题【设计说明】出选做题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。教学反思:本节课是通过介绍高斯的算法,探究这种方法如何推广到一般等差数列的求和本节课的难点在于如何获得推导公式的“倒序相加法”这一思路为了突破这一难点,在教学中采用了以问题驱动的教学方法,设计的三个问题体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题在教学过程中,通过教师的层层引导、学生的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资质维护协议书范本
- 超市专柜终止合同协议
- 贸易业务员合同协议
- 购房合同签附加协议
- 质押合同无偿合同协议
- 设备进口三方协议合同
- 《第02节 万有引力定律的应用》导学案
- 2025年金融管理专业研究生入学考试试题及答案
- 2025年空间设计师专业资格考试试卷及答案
- 模具加工附加合同协议
- 建筑起重信号司索工试题库(附答案)
- Unit1-Unit3 (单元测试)-2024-2025学年人教PEP版(2024)英语三年级上册
- 六上 Unit 1 Part A 课件人教版六年级英语
- 常用焊管规格表
- DL∕T 5161.17-2018 电气装置安装工程质量检验及评定规程 第17部分:电气照明装置施工质量检验
- 广西壮族自治区南宁市2023-2024学年八年级下学期7月期末历史试题(无答案)
- DL-T5344-2018电力光纤通信工程验收规范
- 2024年上海市公安机关文职辅警、公安机关勤务辅警、检察系统辅助文员招聘笔试参考题库含答案解析
- 劳动教育智慧树知到期末考试答案章节答案2024年华中师范大学
- 新时代大学生劳动教育智慧树知到期末考试答案章节答案2024年江西中医药大学
- 2022金融科技SDL安全设计Checklist-v1.0
评论
0/150
提交评论